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Inner and Outer Approximations of Star-Convex Semialgebraic Sets

James Guthrie

Abstract— We consider the problem of approximating a
semialgebraic set with a sublevel-set of a polynomial function.
In this setting, it is standard to seek a minimum volume outer
approximation and/or maximum volume inner approximation.
As there is no known relationship between the coefficients
of an arbitrary polynomial and the volume of its sublevel
sets, previous works have proposed heuristics based on the
determinant and trace objectives commonly used in ellipsoidal
fitting. For the case of star-convex semialgebraic sets, we
propose a novel objective which yields both an outer and
an inner approximation while minimizing the ratio of their
respective volumes. This objective is scale-invariant and easily
interpreted. Numerical examples are given which show that the
approximations obtained are often tighter than those returned
by existing heuristics. We also provide methods for establishing
the star-convexity of a semialgebraic set by finding inner and
outer approximations of its kernel.

I. INTRODUCTION

Consider a compact, semialgebraic set X ⊂ R
n given

by the intersection of the 1-sublevel sets of m polynomial

functions gi(x) ∈ R[x]:

X = {x | gi(x) ≤ 1, i ∈ [m]} (1)

Semialgebraic sets arise naturally in many control applica-

tions. For example, the set of coefficients for which a poly-

nomial is Schur or Hurwitz stable is given by a semialgebraic

set. These sets are often complicated and cumbersome to an-

alyze. As such, it is common to seek simpler representations

which closely approximate the set but are more amenable

to further analysis [1]. Examples of “simple” representations

include hyperrectangles and ellipsoids.

A number of publications have explored the use of sum-

of-squares (SOS) optimization for approximating a semial-

gebraic set with a simpler representation [2]–[8]. The most

common parameterization is to seek a SOS polynomial

whose 1-sublevel set F = {x | f(x) ≤ 1} provides either

an inner (F ⊆ X ) or outer (F ⊇ X ) approximation of

the set X . In this formulation, an open question is the

choice of the objective function. For outer (resp. inner)

approximations, a natural objective is to minimize (resp.

maximize) the volume of the 1-sublevel set. For an ellipsoid

E = {x |xTAx + bTx + c ≤ 1} where A � 0, the

volume is proportional to detA−1. Using the logarithmic

transform, ellipsoidal volume minimization can be posed as

the convex objective −logdetA [9]. More generally, in the

case of homogeneous polynomials it is possible to find the

minimum volume outer approximation by solving a hierarchy

of semidefinite programs [10].
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Fig. 1. Star-convex set X and its kernel (left). The kernel is a convex set
given by the linearized active constraint gi(xb) = 1 defining ∂X (right).

While ellipsoids and homogeneous polynomials offer es-

tablished techniques for approximating a set, they have

inherent symmetry. Thus they are not ideal candidates for

approximating general, asymmetric shapes. General polyno-

mials offer a more flexible basis for approximating sets.

The caveat is that we lack expressions for computing the

volume of the 1-sublevel set as a function of the polynomial

coefficients. The most common approach is to mimic the de-

terminant ([2], [4]) or trace [1] objectives used in ellipsoidal

fitting. While these methods often yield qualitatively good

approximations, they suffer from a lack of interpretability

as the objective generally has no explicit relationship to the

volume of the 1-sublevel set beyond upper bounding it in

some cases [1]. Thus assessing the quality of the solution

requires post-processing by either 1) numerically computing

the resulting volume or 2) plotting the resulting set for

qualitative assessment.

A. Contributions

In this paper we propose a new approach for finding inner

and outer approximations of semialgebraic sets using SOS

optimization. Our method is tailored to cases in which the

set is star-convex. To our knowledge, star-convexity has not

been explored in the SOS literature with the exception of

[11]. Our contributions are as follows:

• We propose and justify an algorithm based on SOS

optimization for jointly finding an inner and outer ap-

proximation of a star-convex semialgebraic set by min-

imizing the volume of the outer approximation relative

to the volume of the inner approximation. We provide

numerical examples showing that this heuristic tends to

yield better approximations than existing methods.

• We provide algorithms for establishing the star-

convexity of a semialgebraic set by finding inner and

outer approximations of its kernel.
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The rest of the paper is organized as follows. Section

II formally defines the problem we address and reviews

the notion of star-convexity. Section III surveys the existing

volume heuristics for SOS-based set approximation. Section

IV proposes a new volume heuristic for finding outer and

inner approximations. Section V provides methods for de-

termining the star-convexity of a set by approximating its

kernel. Section VI provides numerical examples. Section VII

concludes the paper.

B. Notation

Let Z+ denote the set of positive integers. Let Sn−1 :=
{x ∈ R

n | ‖x‖ = 1}. Let i ∈ [k] := {1, . . . , k}. The

notation P ≻ 0 (P � 0) indicates that the symmetric matrix

P is positive definite (resp. positive semidefinite). Given

a compact set X ⊂ R
n, its volume (formally, Lebesgue

measure) is denoted vol X :=
∫

X
dx. Let σX (c) := max

x∈X
cTx

denote the support function of X where c ∈ Sn−1. Given

sets A,B ⊆ R
n the (bi-directional) Hausdorff distance is

dH(A,B) := max(h(A,B), h(B,A)) where h(A,B) :=
max
a∈A

min
b∈B
‖a− b‖2.

The α-sublevel set of a function f(x) : R
n → R is

{x ∈ R
n | f(x) ≤ α}. For x ∈ R

n, let R[x] denote the set

of polynomials in x with real coefficients. Let Rd[x] denote

the set of all polynomials in R[x] of degree less than or

equal to d. A polynomial p(x) ∈ R[x] is a SOS polynomial

if there exists polynomials qi(x) ∈ R[x], i ∈ [j] such that

p(x) = q21(x) + . . . + q2j (x). We use
∑

[x] to denote the

set of SOS polynomials in x. A polynomial of degree 2d
is a SOS polynomial if and only if there exists P � 0
(the Gram matrix) such that p(x) = z(x)TPz(x) where

z(x) is the vector of all monomials of x up to degree d

[12]. To minimize notational clutter, we will sometimes list a

polynomial f(x) as a decision variable where it is implicitly

understood that a monomial basis is specified by the user

and a matrix P is introduced as a decision variable such that

f(x) = z(x)TPz(x).

II. PROBLEM STATEMENT

Definition 1 (Star-Convex). A set S ⊆ R
n is star-convex if

it has a non-empty kernel, where the kernel is defined as:

ker S = {x | tx+ (1 − t)y ∈ S ∀ t ∈ [0, 1], y ∈ S} (2)

Intuitively, the kernel is the set of points in S from which

one can “see” all of S. It is straight-forward to show that the

kernel is convex. Further, if S is convex then kerS = S.

We will be interested in approximating the set (1) for the

case in which it is star-convex with respect to the origin.

Problem 1 (Star-Convex Set Approximation). Given a com-

pact, semialgebraic set X with 0 ∈ intX ∩kerX and d ∈ Z
+

find a polynomial fo(x) ∈ Rd[x] (fi(x) ∈ Rd[x]) whose 1-

sublevel set Fo (Fi) is of minimum (maximum) volume and

is an outer (inner) approximation of X .

min
fo(x)∈Rd[x]

vol Fo s.t. X ⊆ Fo (3)

max
fi(x)∈Rd[x]

vol Fi s.t. Fi ⊆ X (4)

In the sequel, we would like to approximate the kernel of

the set X with a polytope.

Problem 2 (Kernel Approximation). Given a semialgebraic

set X ⊂ R
n find a polytopeKo (Ki) of minimum (maximum)

volume that is an outer (inner) approximation of kerX .

min vol Ko s.t. kerX ⊆ Ko (5)

max vol Ki s.t. Ki ⊆ kerX (6)

III. EXISTING VOLUME HEURISTICS FOR SET

APPROXIMATION

We first review existing heuristics for finding inner and

outer approximations of a semialgebraic set X defined as

in (1) using SOS optimization. Each of these methods finds

an even-degree polynomial f(x) ∈ Rd[x] where d ∈ Z
+ is

specified by the user. The polynomial is parameterized as

f(x) = z(x)TPz(x), where z(x) ∈ Rd/2[x] is a monomial

basis with m terms and P ∈ R
m×m is a symmetric

matrix decision variable. The variations between the methods

largely relate to the objective applied to the matrix P and

whether it must be positive semidefinite (PSD). For general

polynomials, there is no known relationship between P and

the volume of the sublevel sets thus the following objectives

are all heuristics in some sense. The reader is referred to the

given references for further detail.

A. Determinant Maximization (−detP )

In [2], the authors propose maximizing the determinant of

the Hessian ∇2f(x) of SOS polynomials. If f is a polyno-

mial of degree 2, this reduces to the ellipsoidal objective

−detA for E = {x |xTAx + bTx + c ≤ 1}, A � 0. A

limitation of this approach is that the Hessian must be PSD

and therefore the outer approximation is inherently convex,

making it ill-suited to approximating non-convex shapes.

In [4], the authors propose performing determinant maxi-

mization directly on the Gram matrix P of the SOS polyno-

mial. As the Hessian is no longer required to be PSD, this

allows non-convex outer approximations to be found.

B. Inverse Trace Minimization (trP−1)

The determinant maximization objective minimizes the

product of the eigenvalues of P−1. In [4], the authors

propose an alternative heuristic of minimizing the sum of the

eigenvalues of P−1. This requires introducing an additional

PSD decision variable V and imposing the constraint V �
P−1. Using the Schur complement this can be written as a

block matrix constraint involving V and P (vice P−1). The

objective min trV then indirectly minimizes the sum of the

eigenvalues of P−1.

C. l1 Minimization

In [1] the authors propose a volume heuristic based on

minimizing the l1 norm of a polynomial evaluated over a

bounding box B ⊇ X . Using hyperrectangles as bounding

boxes, one can integrate the polynomial and the resulting



objective l1(f(x)) :=
∫

B
f(x) dx is linear in terms of P .

The outer approximation then consists of the intersection of

the 1-superlevel set of f(x) and the bounding box B.

X ⊆ (B ∩ {x | f(x) ≥ 1}) (7)

This is in contrast to the other objectives which do not rely

on bounding boxes as part of the set approximation.1 In this

setting, f(x) is approximating the indicator function of X
over a compact set B. Given B is compact, it is possible

to prove convergence of f(x) to the true indicator function

in the limit (as d→∞) by leveraging the Stone-Weierstrass

theorem. However, the rate of convergence remains unknown

and for a given degree d, other objectives may return a

better outer approximation. One distinct advantage of this

method is that inner approximations can also be found by

outer approximating the complement of X .

IV. INNER AND OUTER APPROXIMATIONS OF

STAR-CONVEX SETS

We now propose a new volume heuristic for solving

Problem 1. Recall the following property for the volume of

a scaled set which can be shown via a change of variables.

Lemma 1. Let X ⊂ R
n. Let sX = {sx |x ∈ X} denote the

scaled set where s ≥ 0. Then vol sX = sn · volX .

The following Lemma which is easily shown provides

conditions under which we can scale an inner approximation

to become an outer approximation of a given compact set.

Lemma 2. Let X ,F be compact sets in R
n such that F ⊆

X . Let 0 ∈ int F . Then there exists a scaling s ≥ 1 such

that X ⊆ sF .

Taken together, these lemmas suggest an intuitive heuristic

for jointly finding an inner and outer approximation of a

compact set X by minimizing the scaling required to turn an

inner approximation into an outer approximation. Although

applicable to approximating any compact set containing

the origin in its interior, this heuristic is best suited to

approximating star-convex sets in which 0 ∈ intX ∩ kerX
as visualized in Figure 2.

In our formulation, we seek a polynomial f : Rn → R

whose 1-sublevel set F = {x | f(x) ≤ 1} provides an inner

approximation of X . We turn this into a condition involving

the complement of X :

F ⊆ X ⇐⇒ f(x) > 1 ∀x ∈ X c (8)

As optimization methods require non-strict inequalities, we

will approximate this condition by introducing a small con-

stant ǫ > 0 and working with the closure of the complement

of X . Define the following:

X̄ =
⋃

i∈[m]

{x | gi(x) ≥ 1} (9)

1One application of approximating semialgebraic sets is to yield a single
sufficient condition for ensuring x 6∈ X , which can be incorporated into a
nonlinear optimization problem (e.g. obstacle avoidance in motion planning
[7]). The presence of the bounding box in the resulting set description would
require logical constraints to represent (f(x) < 1 ∨ x 6∈ B) =⇒ x 6∈ X
which are generally unsupported in nonlinear optimization solvers.
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Fig. 2. 4th-order approximations of examples A (left) and B (right)

Then we can use the following approximation of (8)

F ⊆ intX ⇐ f(x) ≥ 1 + ǫ ∀x ∈ X̄ (10)

Next, we scale the set F by a scaling variable s > 1 to

obtain an outer approximation sF .

sF ⊇ X ⇐⇒ f(xs ) ≤ 1 ∀x ∈ X (11)

Combining the above we arrive at the following:

min
f(x), s

s

s.t.

f(x) ≥ 1 + ǫ ∀x ∈ X̄ ,

f(xs ) ≤ 1 ∀x ∈ X ,

(12)

Remark 1. From Lemma 1, we have the following relation:

vol sF

vol F
= sn (13)

Thus by minimizing s we minimize the ratio of the outer

approximation volume to the inner approximation volume.

We parameterize f(x) as f(x) = z(x)TPz(x) where z(x)
is a monomial basis chosen by the user and P is a symmetric

matrix of appropriate dimension. We introduce SOS polyno-

mials λi(x), µi(x), i ∈ [m] and apply the S-procedure to

replace the set-containment conditions with sufficient SOS

conditions [12]. If s is left as a decision variable, we would

have bilinear terms involving the coefficients of f(x) and s.

As is common in the SOS literature, we overcome this by

performing a bisection over s in which we solve a feasibility

problem at each iteration as given by (14). Algorithm 1

details the bisection method.

Optimization Problem: FindApprox(s,X , z(x))

min
f(x), λi(x), µi(x)

0

s.t.

f(x)− (1 + ǫ)− λi(x)(gi(x) − 1) ∈
∑

[x], i ∈ [m],

1− f(xs )−
m
∑

i=1

µi(x)(1 − gi(x)) ∈
∑

[x],

λi(x), µi(x) ∈
∑

[x], i ∈ [m],

(14)



Algorithm 1 Inner and Outer Approximation of X

Input: X ⊂ R
n, z(x) ∈ R[x], stol > 0

Output: F , sF s.t. F ⊆ X ⊆ sF
sub ← 1 + stol, slb ← 1
while FindApprox(sub,X , z(x)) = Infeasible do

slb ← sub
sub ← 2sub

while sub − slb > stol do

stry ← 0.5(sub + slb)
if FindApprox(stry,X , z(x)) = Infeasible then

slb ← stry
else

sub ← stry
return FindApprox(sub,X , z(x))

Remark 2. We note that the objective is scale-invariant.

Assume we are given a solution pair (f∗(x), s∗) that de-

fines an outer and inner approximation of a set X . If we

scale X by α > 0, the solution pair (f∗( xα ), s
∗) defines

the new approximation, where the objective value remains

unchanged.

Remark 3. If F is convex we can relate the scaling s to the

Hausdorff distance between the approximations.

Lemma 3. Let F ⊂ R
n be a convex, compact set and s ≥ 1.

Then the following holds:

dH(sF ,F) = (s− 1) ·max
x∈F
‖x‖2 (15)

Proof. See appendix.

Remark 4. Existing approaches for finding inner or outer

approximations with SOS optimization generally require

f(x) be SOS. Our formulation is slightly less restrictive

in that f(x) can be negative for x ∈ X . Therefore we

search over a larger candidate set of polynomials. In our

initial experiments we have found adding the constraint

f(x) ∈
∑

[x] does not noticeably degrade the quality of

our approximations. However, without this constraint, the

resulting polynomial is often significantly sparser which is

beneficial for compactness of representation and speed of

evaluation.

V. SAMPLING-BASED APPROXIMATIONS OF THE KERNEL

Algorithm 1 assumed the set X contained the origin in

its kernel. In this section we provide algorithms for finding

polytopic approximations of kerX . These methods can be

used to find a point x∗ ∈ intX ∩ kerX if one exists. We can

then apply Algorithm 1 to the translated set {x−x∗ |x ∈ X}.
It will be convenient to represent the boundary of X in

terms of the inequality that is active. Define the following:

∂Xi = {x | gi(x) = 1, gj(x) ≤ 1, j ∈ [m] \ i} (16)

The boundary of X is given by the union.

∂X =
⋃

i∈[m]

∂Xi (17)

Lemma 4. Let X be a semialgebraic set as defined in (1).

The kernel of X is given by the following semialgebraic set:

kerX = {xk | ∇gi(xb)
T (xk − xb) ≤ 0 ∀xb ∈ ∂Xi, i ∈ [m]}

Proof. ⇒: Assume xk ∈ kerX but there exists a point xb ∈
∂Xi for some i ∈ [m] such that ∇gi(xb)

T (xk − xb) > 0.

Recall the definition of the directional derivative:

lim
t→0

gi(txk + (1 − t)xb)− gi(xb)

t
= ∇gi(xb)

T (xk − xb)

Noting that gi(xb) = 1 and ∇gi(xb)
T (xk − xb) > 0 yields

lim
t→0

gi(txk + (1− t)xb)− 1

t
> 0

This implies there exists an open interval t ∈ (0, α), α > 0 in

which gi(txk + (1− t)xb) > 1. The associated line segment

does not belong to X , i.e. {txk+(1− t)xb | t ∈ (0, α)} 6⊆ X
and therefore xk 6∈ kerX , contradicting our assumption.

⇐: The proof of the reverse direction is nearly identical.

Remark. From Lemma 4 we see that the kernel of X is

defined by cutting-planes tangent to the active constraint

gi(xb) = 1, xb ∈ ∂X as shown in Figure 1.

Although kerX is a convex, semialgebraic set it is not

straightforward to represent it within a semidefinite program.

Determining if a convex, semialgebraic set is semidefinite-

representable is an area of active research and there is not

a systematic procedure for constructing the representation

if one exists [13]. Instead, we provide sampling-based al-

gorithms for finding outer and inner approximations of this

set. If the outer approximation is empty, this is sufficient

to conclude that the set X is not star-convex. Conversely,

if the inner approximation is not empty this is sufficient to

establish that X is star-convex. In the case that the outer

approximation is not empty and the inner approximation is

empty we cannot conclude anything about the star-convexity

of the set.

A. Outer Approximation

We assume the existence of an oracle Sample(∂X ) which

allows us to randomly sample points xb ∈ ∂X and identify

the set of active constraints I = {i | i ⊆ [m], gi(xb) = 1}.
From Lemma 4, each sample defines a cutting plane satisfied

by kerX . We collect these constraints to form an outer

approximation Ko ⊇ kerX . If at any point, Ko = ∅ (which

can be determined using Farkas’ Lemma) we terminate as

this implies kerX = ∅. Algorithm 2 summarizes the method.

B. Inner Approximation

Consider finding a point xk ∈ kerX that maximizes a

linear cost cTxk where c ∈ Sn−1 (i.e. the support function

of kerX ). From Lemma 4, the resulting convex optimization

problem requires set containment constraints.

min
xk

− cTxk

s.t.

−∇gi(x)
T (xk − x) ≥ 0 ∀x ∈ ∂Xi, i ∈ [m]

(18)



Algorithm 2 Outer Approximation of kerX

Input: X ⊂ R
n, Number of samples ns

Output: Outer Approximation Ko ⊇ kerX
Ko ← R

n

for j = 1 to ns do

xb, I ← Sample(∂X )
Ko ← Ko

⋂

{x | ∇gTi (xb)(x− xb) ≤ 0, i ∈ I}
if (Ko = ∅) then

return Ko

return Ko

We replace the set containment conditions with sufficient

conditions using the generalized S-procedure.

Optimization Problem: FindSupport(X , c)

min
xk, λ

(i)
j (x)

− cTxk

s.t.

−∇gi(x)
T (xk − x)−

m
∑

j=1

λ
(i)
j (x)(1 − gj(x)) ∈

∑

[x],i ∈ [m]

λ
(i)
j (x) ∈

∑

[x], i ∈ [m], j ∈ [m] \ i
(19)

For a given direction c ∈ Sn−1 this program lower bounds

the support function of kerX . If the problem is feasible, the

minimizing argument xk belongs to kerX (though it may

lie in the interior) and therefore X is star-convex. If the

problem is infeasible we cannot make any conclusions about

the star-convexity of X . By solving for random directions

ci ∈ Sn−1, i ∈ [ns] the convex hull of the points xk provides

an inner approximation of the kernel as given by Algorithm

3.

Algorithm 3 Inner Approximation of kerX

Input: X ⊂ R
n, Directions ci ∈ Sn−1, i ∈ [ns]

Output: Inner Approximation Ki ⊆ kerX
Ki ← ∅
for i = 1 to ns do

xk ← FindSupport(X , ci)
if FindSupport(X , ci) = Infeasible then

return Ki = ∅
Ki ← conv(Ki, xk)

return Ki

C. Kernel of Unions and Intersections

Given sets A,B ⊆ R
n and their kernels, we can find inner

approximations of the kernel of their intersection and union

using the following lemma.

Lemma 5. Let A,B ⊆ R
n. Then the following holds: 2

ker(A ∩ B) ⊇ kerA ∩ kerB (20)

ker(A ∪ B) ⊇ kerA ∩ kerB (21)

2Simple examples can be constructed to show that there is no relation
between ker(A ∩ B) and ker(A ∪ B) in general.

TABLE I

PERCENT ERROR OF OUTER APPROXIMATIONS OF EXAMPLES A-C

Example Degree s −detP trP−1 l1
A 4 11.9 35.1 40.0 18.3
A 6 1.4 8.3 10.0 12.8
B 4 17.7 31.1 35.0 37.3
B 6 4.9 9.7 14.0 17.7
C 4 2.6 20.1 21.2 15.3
C 6 0.6 7.2 7.4 11.0

Proof. See appendix.

Thus if A,B are star-convex and have kernels that inter-

sect, their union and intersection is also star-convex. This

is useful for establishing star-convexity without resorting to

numerical algorithms.

VI. EXAMPLES

We evaluate Algorithm 1 on various examples and com-

pare the results to the existing heuristics reviewed in Section

III.3 We focus our comparison on outer approximations as

more heuristics apply to this case. We use percent error

as our metric, calculated as 100 × volFo−volX
volX

where Fo

is the outer approximation of X . We first consider three

examples from the literature. For both 4th-order and 6th-

order polynomials, our algorithm yielded the tightest outer

approximation as shown in Table I.4 Next we consider

100 randomly generated convex polytopes in R
2. In the

majority of cases, our heuristic yielded the tightest outer

approximation as shown in Table II.

A. Polynomial matrix inequality [3]

X = {x ∈ R
2 |

[

1− 16x1x2 x1

x1 1− x2
1 − x2

2

]

� 0}

Using Algorithms 2 and 3 we find the exact kernel (Ko =
Ki = conv{±(−0.1752, 0.3335),±(0.1268, 0.2213)}) as

shown in Figure 1. Figure 2 shows the 4th-order inner and

outer approximation obtained with Algorithm 1.

B. Discrete-time stabilizability region [3],[1]

X = {x ∈ R
2 | 1 + 2x2 ≥ 0, 2− 4x1 − 3x2 ≥ 0,

10− 28x1 − 5x2 − 24x1x2 − 18x2
2 ≥ 0,

1− x2 − 8x2
1 − 2x1x2 − x2

2 − 8x2
1x2 − 6x1x

2
2 ≥ 0}

The set contains the origin in its kernel. Figure 2 shows

the 4th-order inner and outer approximation obtained with

Algorithm 1. Figure 3 shows the 6th-order approximations

obtained with each objective. For the l1 approximation we

also show the bounding box B as given in [1].

3For the bounding box B required by the l1 objective, we used the
smallest hyperrectangle B ⊇ X unless noted otherwise.

4We forego comparing 2nd-order polynomials as the determinant maxi-
mization objective exactly minimizes volume in this case.



TABLE II

INSTANCES IN WHICH OBJECTIVE OBTAINED SMALLEST ERROR

Deg. # Trials s −detP trP−1 l1
4 100 73 13 0 14
6 100 98 0 0 2
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Fig. 3. 6th-order outer approximations of example B

C. General Non-Convex Set [5]

X = {x ∈ R
2 | (x1 − 1)2 + (x2 − 1)2 ≤ 1, x2 ≤ 0.5x2

1}

This set is star-convex but does not contain the origin in its

kernel. In applying Algorithm 1 we translated the set to the

Chebyshev center of its kernel x∗ = (1.39, 0.35).

D. Convex Polytopes

We generate 100 random convex polytopes in R
2 with

their Chebyshev center at the origin. We find outer approx-

imations using the different objectives. Table II lists the

number of times each objective obtained the smallest percent

error relative to the other objectives for a given polytope.

E. Implementation Details

YALMIP [14] and MOSEK [15] were used to solve

the SOS programs.5 In solving (14), we used polynomials

λ(x), µ(x) with degree equal to that of the polynomial f(x).

VII. CONCLUSIONS

An algorithm for finding approximations of star-convex

semialgebraic sets using sum-of-squares optimization was

proposed. The algorithm relies on a novel objective which

minimizes the scaling necessary to transform an inner ap-

proximation into an outer approximation of the set. Numer-

ical examples demonstrated this objective often finds tighter

approximations compared to existing heuristics.

5Supporting code will be released upon publication.

APPENDIX

A. Proof of Lemma 3

Recall the Hausdorff distance between two compact, con-

vex sets can be written in terms of their support functions.

dH(sF ,F) = max
c∈Sn−1

|σsF (c)− σF (c)| (22)

= max
c∈Sn−1

|sσF (c)− σF (c)| (23)

= (s− 1) · max
c∈Sn−1

σF (c) (24)

= (s− 1) ·max
x∈F
‖x‖2 (25)

B. Proof of Lemma 5

1) ker(A ∩ B) ⊇ kerA ∩ kerB: Let l(x, y) = {λx+ (1−
λ)y |λ ∈ [0, 1]} for some x ∈ kerA ∩ kerB and y ∈ A ∩ B.

As x ∈ kerA, y ∈ A =⇒ l(x, y) ⊆ A and similarly, x ∈
kerB, y ∈ B =⇒ l(x, y) ⊆ B, we see that x ∈ ker(A∩B).

2) ker(A ∪ B) ⊇ kerA ∩ kerB: Let l(x, y) = {λx+ (1−
λ)y |λ ∈ [0, 1]} for some x ∈ kerA ∩ kerB and y ∈ A ∪ B.

For the case when y ∈ A, then x ∈ kerA =⇒ l(x, y) ⊆
A =⇒ l(x, y) ⊆ A∪B. Similarly, for the case when y ∈ B,

then x ∈ kerB =⇒ l(x, y) ∈ B =⇒ l(x, y) ⊆ A ∪ B.

Therefore x ∈ ker(A ∪ B).
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