
Piecewise-Polynomial Outer Approximations of Obstacles for
Optimization-Based Collision Avoidance

James Guthrie

Abstract— We propose a novel condition for ensuring obstacle
avoidance in optimization-based, 2D motion planning. This
condition relies on representing the obstacle with two functions
which provide lower and upper bounds of one coordinate
as a parametric function of the other coordinate. In general
these functions are not smooth and therefore problematic
for standard nonlinear optimization solvers. We formulate
a method based on sum-of-squares optimization for finding
outer approximations using twice continuously differentiable
piecewise-polynomial functions. We allow for the obstacle and
its Minkowski sum with a disk to be bounded to accommodate
distance-based constraints. Our formulation is advantageous in
that it can tightly approximate complex unions of convex and
select non-convex shapes with only two closed-form expressions.
The associated condition for obstacle avoidance only introduces
a single constraint to a trajectory generation problem reducing
computational complexity. For convex obstacles, we compare
the performance of our approximate representation to an al-
ternative method that uses exact representations. On a Dubin’s
car path planning problem we achieve faster solve times while
incurring only slight reductions in performance.

I. INTRODUCTION

Obstacle avoidance is a crucial component of motion plan-
ning algorithms for many robotic and autonomous systems.
For mobile robots which do not move aggressively, it is
often acceptable to neglect or approximate the dynamics.
Sampling-based methods such as RRT or Hybrid A* are
widely used in these situations [1], [2]. A shortcoming of
these approaches is that they are generally limited to specific
objectives such as finding the shortest-path. Additionally they
often rely on representing control actions as a finite set of
options. While achieving kinematic feasibility, the resulting
trajectories may be difficult to track as they do not account
for complex dynamic constraints [3].

Recent research has focused on using optimization-based
methods for real-time motion planning that explicitly account
for complex vehicle dynamics [4]–[6]. This is important for
cases where the system dynamics cannot be neglected or
the objective is not representable within a sampling-based
planner. The majority of these methods involve solving a
nonlinear optimization problem. Advances in both computing
power and the availability of customized solvers has made
this realizable [7]–[9].

In general, the nonlinear optimization solvers commonly
used in motion planning require all constraints be closed-
form expressions that are twice continuously differentiable.
This is problematic for obstacle avoidance as closed-form

1James Guthrie is with the Johns Hopkins University, Baltimore, Mary-
land, USA. jguthri6@jhu.edu

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 1. Dubin’s Car Navigating Obstacles With 0.2m Clearance

expressions generally do not exist except for those involving
circles. As such, one common approach is to approximate
an object with (possibly multiple) circles and use the known
closed-form expressions as constraints [6], [10]. However
for tight maneuvering such as parking a car or navigating a
narrow passage, these crude approximations can become un-
acceptable as they artificially render the problem infeasible.

A recent body of research has focused on how to
incorporate more refined obstacle representations within
optimization-based motion planning algorithms [3], [11].
These methods focus on cases in which objects are convex. In
this case, the distance between two objects can be computed
numerically using convex optimization methods. A direct
embedding of optimization problem as a constraint within
a larger nonlinear optimization problem would yield a bi-
level problem which is computationally burdensome and not
widely supported by solvers. Instead, in some instances one
can directly encode the algebraic conditions that the global
optimum is known to satisfy. Importantly, this can lead to
a smooth reformulation of the collision avoidance constraint
making it amenable to nonlinear optimization solvers [3],
[12].

One downside of embedding optimization problems within
optimization problems is that computational complexity of-
ten grows quickly leading to long runtimes. In [3], each
constraint representing a face of an obstacle to be avoided
requires introducing a new variable at each time index in the
trajectory. For objects with complex descriptions this can



quickly lead to slow solve times.
Instead of explicitly modeling the obstacle as a semi-

algebraic set, one may instead seek to outer approximate this
set with an implicit or parametric representation. In [13] the
authors use sum-of-squares (SOS) optimization [14] to find
polynomial representations of point clouds and related semi-
algebraic sets. This allows complex geometry to be outer
approximated by a single, implicit equation in R3. Tight
approximations are sought by minimizing the volume of the
unit sublevel set subject to set containment conditions. With
the exception of ellipsoids, there does not exist expressions
for the volume of the unit sublevel set of implicit functions.
The authors propose various surrogate objectives for volume
minimization. Related works have pursued similar ideas for
forming inner or outer approximations of non-convex sets
arising in various domains [15]–[17].

In this work, we propose using SOS optimization to find
closed-form representations of obstacles for ensuring colli-
sion avoidance in optimization-based, 2D motion planning.
Instead of seeking an implicit representation, we develop a
new parametric form in which the obstacle is represented
by two piecewise-polynomial functions that represent the
obstacle’s minimum and maximum y coordinates at a given x
coordinate. This simple form allows us to directly minimize
the resulting area. By bounding the Minkowski sum of the
obstacle with a disk of given radius we obtain a single closed-
form constraint that ensures a minimum separation between a
point mass and the obstacle. This allows us to navigate com-
plex non-convex obstacles as shown in Figure 1. Importantly
no new variables are introduced to the optimization problem.
We apply our method to planning for a Dubin’s car model
in the presence of an obstacle consisting of multiple convex
polygons. We achieve runtimes 4-10x faster than the method
of [3] at the cost of slight loss of optimality.

The rest of the paper is organized as follows. Section
II sets up the problem. Section III develops an SOS-based
approach for finding outer approximations of the obstacle.
Section IV applies the resulting method to path planning for
a Dubin’s car model. Section V concludes the paper and
discusses future directions.

A. Notation

For ξ ∈ Rn,R[ξ] is the set of polynomials in ξ with real
coefficients. The subset

∑
[ξ] = {p = p21 + p22 + . . . + p2n :

p1, . . . , pn ∈ R[ξ] of R[ξ] is the set of SOS polynomials in
ξ. Let Dr = {(x, y) |x2+y2 ≤ r2}, the disk of radius r ≥ 0.

II. PROBLEM SETUP

Consider an obstacle in R2 represented by the following
semi-algebraic set:

O={(x, y) ∈ R2|xl ≤ x ≤ xu, hl(x) ≤ y ≤ hu(x)} (1)

We assume that hl(x), hu(x) are continuous but not neces-
sarily smooth functions of x. Specifically, we represent h•(x)
where • indicates lower (l) or upper (u) as follows:

h(x) =


h1(x), if t1 ≤ x < t2

h2(x), if t2 ≤ x < t3

. . .

hn(x), if tn ≤ x ≤ tn+1

(2)

Here each function hi(x) is assumed to be smooth,
hi(ti+1) = hi+1(ti+1) for continuity and t1 = xl, tn+1 = xu

represent the domain over which the function is defined.
We can define the interior of O as follows:

Definition 1. A point (xp, yp) is in the interior of O if the
inequalities defining O hold strictly

hl(xp) < yp < hu(xp) xl < xp < xu (3)

Remark 1. If we did not assume that h•(x) was piecewise-
smooth then, at a point xp where h•(xp) is discontinuous,
there would be points on the boundary misclassified by (3)
as being in the interior.

The following Lemma provides a related condition for
determining if a point (xp, yp) is in the interior of O.

Lemma 1. A point (xp, yp) is in the interior of O if and
only if xl < xp < xu and (yp − hu(xp))(yp − hl(xp) < 0

Proof. The inequality constraints on x are simply from the
definition. For the inequality on yp to hold, either we have

yp > hu(xp), yp < hl(xp) (4)

or we have

yp < hu(xp), yp > hl(xp) (5)

The first case involves an obvious contradiction as hu(x) ≥
hl(x). Therefore only the second case can occur which
agrees with the definition given. The reverse direction of the
proof is just verifying the definition of the interior satisfies
the stated conditions.

From Lemma 1 we formulate the following condition that
ensures a point mass (xp, yp) does not lie in the interior of
obstacle O:

(yp − hu(xp))(yp − hl(xp)) ≥ 0 if xl < xp < xu (6)

Although a valid representation, this constraint is not
supported in most nonlinear optimization methods used for
trajectory generation as the logical condition and functions
hl(x), hu(x) are not smooth.

To eliminate the logical condition, consider the following
augmented form.

h̄•(x) =


a, if x < xl

h•(x), if xl ≤ x ≤ xu

b, if x > xu
(7)

The parameters a and b are arbitrary constants but are the
same in both hu(x) and hl(x). Condition (6) can then be
replaced with the equivalent constraint

(yp − h̄u(xp))(yp − h̄l(xp)) ≥ 0 (8)



as outside the interval the equation reduces to (yp−a)(yp−
a) ≥ 0 and (yp − b)(yp − b) ≥ 0 which holds trivially.

The functions h̄u(x), h̄l(x) are still non-smooth however.
One approach to resolve this is to search for polynomials
pu(x), pl(x) that closely approximate the non-smooth func-
tions. In what follows, we setup a framework for doing this
using sum-of-squares optimization.

III. OUTER APPROXIMATIONS OF NON-CONVEX SETS

We would like to find twice continuously differentiable
approximations of the functions h̄u(x), h̄l(x) that can be
combined with condition (8) to enforce obstacle avoidance
within an optimization-based motion planner. In obstacle
avoidance where safety is paramount, we generally would
prefer to guarantee that our approximations are conservative
- i.e. they form an outer approximations of the true set O.
To encourage tight fits we minimize the volume of the area
over the interval xl ≤ x ≤ xu. This can be posed as an
optimization problem:

min

∫ xu

xl

pu(x)− pl(x)dx

s.t. pu(x) ≥ hu(x) ∀ x ∈ X
pl(x) ≤ hl(x) ∀ x ∈ X
pu(x) = pl(x) ∀ x /∈ X

(9)

where X is the interval:

X ={x : xl ≤ x ≤ xu} (10)

More generally, we may be interested in ensuring that
(xp, yp) satisfies a given Euclidean distance r from O. This
is equivalent to ensuring that (xp, yp) is not contained in the
Minkowski sum of the set O with a disk Dr.

O
⊕
Dr = {

[
xo
yo

]
+

[
xd
yd

]
|(xo, yo) ∈ O, x2d + y2d ≤ r2}

(11)
Given that O contained values of x in the interval xl ≤ x ≤
xu it is obvious that the set resulting from the Minkowski
sum extends this interval to xl−r ≤ x ≤ xu+r. As such we
must modify our objective to minimize the area over this new
interval. Additionally, we introduce separate (x, y) variables
for O and Dr so they can vary independently of one another.
We denote these as (xh, yh) and (xd, yd) respectively. The
polynomial functions then bound the points (xp, yp) resulting
from their sum.

min

∫ xu+r

xl−r
pu(x)− pl(x)dx

s.t. pu(xp) ≥ hu(xh) + yd ∀ (xp, xh, xd, yd) ∈ W
pl(xp) ≤ hl(xh) + yd ∀ (xp, xh, xd, yd) ∈ W
pu(xp) = pl(xp) ∀ xp /∈ Xp

(12)

where Xp is the interval

Xp ={x : xl − r ≤ x ≤ xu + r} (13)

and W is the semi-algebraic set:

W = {(xp, xh, xd, yd) : xp = xh + xd, x
l ≤ xh ≤ xu

xl − r ≤ xp ≤ xu + r, x2d + y2d ≤ r2}
(14)

While the above formulation is valid, the end condition
pu(xp) = pl(xp)∀xp /∈ Xp forces the polynomials to be
the same. If O is non-empty, searching over polynomials is
infeasible. However, for nonlinear optimization solvers we
generally only need functions that are twice continuously
differentiable. Motivated by this observation, we replace our
polynomials with the following piecewise-smooth function:

p(x) =



p0(x)(= a), if x < c1

p1(x), if c1 ≤ x < c2

p2(x), if c2 ≤ x < c3

. . .

pn(x), if cn ≤ x ≤ cn+1

pn+1(x)(= b), if x > cn+1

(15)

Here each function pi(x) is assumed to be smooth and
pi(ci+1) = pi+1(ci+1) for continuity. We choose endpoints
c1 ≤ xl − r and cn+1 ≥ xu + r that bound the set
Xp. Outside of this interval, the piecewise functions are
set equal to each other so the obstacle avoidance condition
(6) holds trivially. We now explicitly write the functions
hl(xh), hu(xh) in terms of the underlying nh functions
given in (2). Similarly we write pl(xp), p

u(xp) in terms
of the underlying np non-constant functions and constant
endpoints pu0 (xp), p

l
0(xp), p

u
n+1(xp), p

l
n+1(xp). The resulting

optimization problem is:

min

np∑
i=1

∫ ci+1

ci

pui (x)− pli(x)dx

s.t. pui (xp) ≥ huj (xh) + yd ∀ (xp, xh, xd, yd) ∈ Zi,j
i = 1, . . . , np , j = 1, . . . , nh

pli(xp) ≤ huj (xh) + yd ∀ (xp, xh, xd, yd) ∈ Zi,j
i = 1, . . . , np , j = 1, . . . , nh

pu0 (xp) = a, pl0(xp) = a

punp+1(xp) = b, plnp+1(xp) = b

(pui+1(xp)− pui (xp))|xp=ci+1
= 0, i = 0, . . . , np,

d(k)

dx
(k)
p

(pui+1(xp)− pui (xp))|xp=ci+1 = 0

i = 0, . . . , np, k = 1, 2

(pli+1(xp)− pli(xp))|xp=ci+1
= 0, i = 0, . . . , np,

d(k)

dx
(k)
p

(pli+1(xp)− pli(xp))|xp=ci+1
= 0

i = 0, . . . , np, k = 1, 2
(16)



where Zi,j is the semi-algebraic set:

Zi,j = {(xp, xh, xd, yd) : xp = xh + xd

ci ≤ xp ≤ ci+1, tj ≤ xh ≤ tj+1

x2d + y2d ≤ r2}
(17)

The last four constraints are new and enforce continuity of
pu(xp), p

l(xp) and their first and second derivatives at the
knots ci. Given fixed knot positions the integral objective
and continuity constraints all become linear constraints on
the polynomial coefficients.

The first two constraints involve set-containment condi-
tions. We apply the generalized S-procedure [14] to turn
these into SOS conditions involving multiplier functions
s•i,j(xp, xh, xd, yd). This yields the following semidefinite
program. To save space we drop the dependence on variables
in the SOS conditions.

min

np∑
i=1

∫ ci+1

ci

pui (x)− pli(x)dx

s.t. (pui − huj − yd)− s
u,1
i,j (r2 − x2d − y2d)

−su,2i,j (xp − xh − xd) + su,3i,j (xp − xh − xd)
−su,4i,j (cj+1 − xp) + su,5i,j (cj − xp)

−su,6i,j (tj+1 − xh) + su,7i,j (tj − xh) ∈
∑

i = 1, . . . , np , j = 1, . . . , nh

(−pli + hlj + yd)− sl,1i,j(r
2 − x2d − y2d)

−sl,2i,j(xp − xh − xd) + sl,3i,j(xp − xh − xd)
−sl,4i,j(cj+1 − xp) + sl,5i,j(cj − xp)

−sl,6i,j(tj+1 − xh) + sl,7i,j(tj − xh) ∈
∑

i = 1, . . . , np , j = 1, . . . , nh

su,mi,j , sl,mi,j ∈
∑

[xp, xh, xd, yh]

i = 1, . . . , np , j = 1, . . . , nh , m = 1, . . . , 7

pu0 (xp) = a, pl0(xp) = a

punp+1(xp) = b, plnp+1(xp) = b

(pui+1(xp)− pui (xp))|xp=ci+1
= 0, i = 0, . . . , np,

d(k)

dx
(k)
p

(pui+1(xp)− pui (xp))|xp=ci+1
= 0

i = 0, . . . , np, k = 1, 2

(pli+1(xp)− pli(xp))|xp=ci+1 = 0, i = 0, . . . , np,

d(k)

dx
(k)
p

(pli+1(xp)− pli(xp))|xp=ci+1 = 0

i = 0, . . . , np, k = 1, 2
(18)

Remark 2. The SOS program appears quite large as it
involves enumerating all possible combinations of bounding
functions p•i (xp) and set functions h•j (xh). However, in many
instances p•i (xp) will not cover any portion of h•j (xh). In
these cases the semi-algebraic set Xi,j is empty and the
associated SOS constraints can be removed from the problem
without consequence. Additionally, the free variable xh can

be eliminated from the problem by replacing it with xp−xd
and removing constraints enforcing xp = xh + xd. Together
these simplifications reduce the problem size.

IV. OPTIMIZATION-BASED COLLISION AVOIDANCE

The SOS optimization problem provides a tractable means
for finding piecewise-polynomial functions pu(x), pl(x) that
outer bound the set of points that are, at most, a distance
r from the obstacle. Because these functions are twice con-
tinuously differentiable, we can use them within a nonlinear
optimization problem. Specifically we can use (8) to enforce
that a trajectory maintains a given distance from an obstacle.
In this section we demonstrate how this can be used to
navigate around non-convex obstacles. We also provide a
comparison of performance with the approach detailed in
[3]. In both cases we use a test case involving path planning
for a Dubin’s car model.

A. Path Planning for Dubin’s Car

We formulate a standard trajectory problem for controlling
a Dubin’s car model with states (x, y, θ) and control inputs
(v, ω) representing velocity and turning rate. The continuous
dynamics are given by:

dx

dt
= v cos θ,

dy

dt
= v sin θ,

dθ

dt
= ω (19)

We use direct multiple shooting as the transcription method
[18] with a time step ∆t = 0.1s. The dynamics are then
given by xk+1 = f(xk, uk) where xk and uk denote the state
and control vectors at time index k. Additionally we have
constraints on the control magnitude and rate represented by
h(uk) ≥ 0. Specifically we have:

−4 ≤ ωk ≤ 4, 0 ≤ vk ≤ 2, −1 ≤ (vk+1 − vk)

∆t
≤ 1

(20)
Finally, we add obstacle avoidance constraints for m obsta-
cles defined by piecewise-polynomial functions pu(x), pl(x)
using the form (8). We specify the initial state xs and final
state xf . In all problem instances, we assume a time horizon
of 10 seconds giving N = 100 shooting intervals. Given our
initial state, final state and time are fixed, our objective is to
minimize the rate of change in the control signals.

min

N∑
k=0

(uk+1 − uk)T (uk+1 − uk)

s.t. x0 = xs, xN+1 = xf

xk+1 = f(xk, uk), h(xk) ≥ 0

(yk − pui (xk))(yk − pli(xk)) ≥ 0, i = 1, . . . ,m

∀ k = 0, . . . , N
(21)



B. Motion Planning Around Non-Convex Sets

We demonstrate our method on a non-convex set O of the
form (1) with xl = 0, xu = 3 and y bounded by:

−x2 ≤ y ≤ x2, if 0 ≤ x < 1

−1 ≤ y ≤ −x2 + 2x, if 1 ≤ x < 2

x2 − 4x+ 3 ≤ y ≤ 0, if 2 ≤ x ≤ 3

(22)

Figure 2 shows the set in red along with a disk of
radius 0.2. We solve the SOS problem (18) for piecewise-
polynomial functions pu(x), pl(x) that conservatively bound
O
⊕
D0.2. For both functions, we choose an equally-spaced

grid of 30 knots (plus endpoints) with each interval be-
ing 6th-order polynomials. We specify the endpoints as
[−0.24, 3.24]. Outside this interval the upper and lower
bounds are constant and equal so the distance constraint is
trivially satisfied (effectively inactive). Figure 2 shows the
resulting functions with knot points indicated by circles. To
check the quality of our fit, we numerically evaluate the
Minkowski sum and plot it in gray. The result is empirically
very tight with the most conservatism occurring around the
endpoints where the piecewise-polynomial function must
approach a constant while maintaining continuous first and
second derivatives. Solving the SOS program took 0.63s with
MOSEK.

We use the resulting functions to perform path planning
for the Dubin’s car. Starting from an initial state of xs =
[1, 0.25, π2 ] we solve for a trajectory to bring us to xf =
[2, 4, π2 ] while maintaining a distance of 0.2m from three
instances of the obstacle. We initialize the decision variables
for the vehicle states (xk, yk, ωk) with a crude initial path
obtained from Hybrid A*. Control variables are initialized to
zero. Figure 1 shows the resulting trajectory. A disk of radius
0.2m is plotted around the vehicle trajectory, confirming the
distance constraint is satisfied. Solving the nonlinear program
took 0.80s with IPOPT.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 2. Outer Approximation of Minkowski Sum of Obstacle and Disk

C. Comparison to Exact Convex Collision Detection

In [3] the authors present a method for exact optimization-
based collision avoidance (OBCA) between a convex vehicle
shape and m convex obstacles. The formulation leverages
strong duality for distance computations between non-empty
compact convex sets. Non-convex sets can be approximated
by the union of multiple (possibly many) convex sets. The
advantage of their formulation is that the distance constraints
are exact compared to the conservative outer approximation
presented here. Additionally, their method allows for arbi-
trary convex vehicle shapes while ours is presently limited
to circular representations of the vehicle. The downside of
their formulation is that, at each time step, new variables are
introduced for each constraint used to represent an object.
For complex shapes the computational complexity grows
quickly. In contrast the method presented here does not
introduce any new variables. A single nonlinear constraint
is imposed at each time step.

Figure 3 shows a non-convex shape formed from the
union of 8 convex polygons. Representing this shape in the
OBCA framework requires 32 new variables at each time
step in the trajectory optimization problem. We bound the
Minkowski sum of this shape with a disk of radius 0.1m.
The resulting piecewise-polynomial functions are shown in
Figure 3. Solving the SOS problem took 1.29s with MOSEK.
Empirically they are seen to be quite tight except for the end
points which are chosen to be [−1.166, 1.166].

We compare the performance of our piecewise-polynomial
(PWP) approach to the OBCA method of [3] (OBCA) on
the Dubin’s path planning problem. Starting from an initial
state of xs = [0.25, 1, 0] we solve for a trajectory to bring
us to xf = [1, 2.5, 0] over a 10-second horizon. To test the
scaleability of each method we consider test cases with 1-4
obstacles of the form shown in Figure 3. We note that the two
problem formulations are identical except for the obstacle
avoidance conditions. We initialize both problems identically
with a crude path obtained from Hybrid A*. Dual variables
in the OBCA approach are initialized to 0.1 Figure 4 shows
the 4 obstacle case. In all instances the trajectories obtained
by PWP and OBCA were qualitatively similar. Figure 5
provides a zoom of the trajectories. Between time indices of
the transcription method (shown by circles) both trajectories
violate the distance constraints. This ”corner cutting” is a
separate issue faced by all trajectory optimization methods
which rely on discrete representations of time.

Table I lists the solve times and objective values obtained
for each case. In general, the OBCA approach achieves
slightly lower cost (i.e. less aggressive controls). This agrees
with our general expectations as, due to the use of exact
distance constraints, the OBCA problem has a slightly larger
obstacle-free area to plan with. However, this comes at the
cost of solver runtimes. The piecewise-polynomial approach
was faster in all instances. We list the number of solver
iterations performed by IPOPT. In all instances the number
of iterations are relatively close, thus the speedup seen by
the PWP approach can be attributed to the smaller problem



TABLE I
MOTION PLANNING WITH PIECEWISE POLYNOMIAL AND OBCA

Num. Cost Cost Time (s) Time (s) Iter. Iter.
Obs. (OBCA) (PWP) (OBCA) (PWP) (OBCA) (PWP)

1 0.0451 0.0451 1.87 0.256 49 24
2 0.5998 0.6430 27.22 5.61 398 409
3 0.7196 0.8563 22.36 3.18 224 188
4 1.4515 0.8616 23.94 2.22 181 113

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Fig. 3. Outer Approximation of Minkowski Sum of Polygon and Disk

dimension as no new variables are introduced for the obstacle
avoidance constraints.

D. Implementation Details

All SOS problems were solved using MOSEK [19] in
conjunction with the SOS module of YALMIP [20]. All
nonlinear optimization problems were solved with IPOPT
[21] with the linear solver MUMPS called via CasADi
[22]. For both problem formulations reported in Table I, we
expect the solve times listed can be reduced by an order
of magnitude through standard approaches (e.g. compiling
gradient and Hessian functions in C++ and using a tailored
NLP solver such as [8]). Computations were performed on
a MacBook Pro with a 2.6 GHz Intel Core i7.

V. CONCLUSIONS

In this work we developed a new approach for em-
bedding obstacle avoidance constraints within optimization-
based motion planning algorithms. This approach relied on
finding tight outer approximations of semi-algebraic sets
using sum-of-squares optimization. In future work we plan
to perform a more rigorous comparison with competing
methods across a variety of problem instances. We also plan
to extend these techniques to motion planning in R3 and to
take into account the geometry of the vehicle in addition to
the obstacle.

REFERENCES

[1] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” 06 2010.

0 0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

Fig. 4. Dubin’s Car Navigating Four Obstacles With 0.1m Clearance

1.8 2 2.2 2.4 2.6 2.8 3 3.2

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Fig. 5. Dubin’s Car Navigating Four Obstacles (Zoom)

[2] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning
for autonomous vehicles in unknown semi-structured environments,”
I. J. Robotic Res., vol. 29, pp. 485–501, 04 2010.

[3] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based colli-
sion avoidance,” IEEE Transactions on Control Systems Technology,
vol. PP, 11 2017.

[4] Z. Zhu, E. Schmerling, and M. Pavone, “A convex optimization
approach to smooth trajectories for motion planning with car-like
robots,” 2015 54th IEEE Conference on Decision and Control (CDC),
pp. 835–842, 2015.

[5] K. Bergman, O. Ljungqvist, and D. Axehill, “Improved path planning
by tightly combining lattice-based path planning and optimal control,”
IEEE Transactions on Intelligent Vehicles, pp. 1–1, 2020.

[6] M. Brown and J. Gerdes, “Coordinating tire forces to avoid obstacles
using nonlinear model predictive control,” IEEE Transactions on
Intelligent Vehicles, vol. PP, pp. 1–1, 11 2019.

[7] M. Vukov, A. Domahidi, H. J. Ferreau, M. Morari, and M. Diehl,
“Auto-generated algorithms for nonlinear model predictive control on
long and on short horizons,” 52nd IEEE Conference on Decision and
Control, pp. 5113–5118, 2013.

[8] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “Forces nlp:
An efficient implementation of interior-point methods for multistage
nonlinear nonconvex programs,” International Journal of Control,
pp. 1–26, 04 2017.

[9] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “Gusto: Guaranteed



sequential trajectory optimization via sequential convex program-
ming,” pp. 6741–6747, 05 2019.

[10] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
bertha — a local, continuous method,” 2014 IEEE Intelligent Vehicles
Symposium Proceedings, pp. 450–457, 2014.

[11] T. Schoels, P. Rutquist, L. Palmieri, A. Zanelli, K. O. Arras, and
M. Diehl, “Ciao?: Mpc-based safe motion planning in predictable
dynamic environments,” 2020.

[12] M. Gerdts, R. Henrion, D. Hömberg, and C. Landry, “Path planning
and collision avoidance for robots,” 2012.

[13] A. Ahmadi, G. Hall, A. Makadia, and V. Sindhwani, “Geometry of 3d
environments and sum of squares polynomials,” 07 2017.

[14] P. Parrilo, Structured semidefinite programs and semialgebraic geom-
etry methods in robustness and optimization. PhD thesis, California
Institute of Technology, 2000.

[15] J. Guthrie and E. Mallada, “Outer approximations of minkowski op-
erations on complex sets via sum-of-squares optimization,” Submitted
to American Control Conference 2021.

[16] D. Henrion and C. Louembet, “Convex inner approximations of
nonconvex semialgebraic sets applied to fixed-order,” International
Journal of Control - INT J CONTR, vol. 85, 04 2011.

[17] F. Dabbene, D. Henrion, and C. Lagoa, “Simple approximations of
semialgebraic sets and their applications to control,” Automatica,
vol. 78, 09 2015.

[18] H. Bock and K. Plitt, “A multiple shooting algorithm for direct solution
of optimal control problems,” pp. 242–247, 01 1984.

[19] M. ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 8.1., 2017.

[20] J. Lofberg, “Yalmip : a toolbox for modeling and optimization in
matlab,” in 2004 IEEE International Conference on Robotics and
Automation (IEEE Cat. No.04CH37508), pp. 284–289, Sep. 2004.

[21] A. Wächter and L. Biegler, “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, pp. 25–57, 03 2006.

[22] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and

optimal control,” Mathematical Programming Computation, vol. 11,
pp. 1–36, 2019.


