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Abstract—Future sensors and weapons rapidly vary their
power consumption presenting new challenges to ensuring
stable operation of naval power systems. Through a series of
examples, it is shown that standard small-signal impedance
methods are a poor surrogate for understanding these pulsed
systems and there is a need for large-signal stability analysis
tools. Sum-of-squares optimization is proposed as a means of
analyzing the nonlinear dynamics of these systems by providing
estimates of the region of attraction, a key metric in large-
signal stability. It is compared to polytopic methods and seen
to provide more accurate results.

I. INTRODUCTION

Naval power systems are increasingly moving towards
power electronic distribution systems (PEDS). Such systems
are advantageous for their high power density, efficiency, and
configurability. High-bandwidth power electronics ensure
tight output regulation, rejecting input voltage disturbances
from propagating to the output. As a result of their controls,
power electronic converters often behave as constant power
loads which, in a small-signal sense, exhibit a negative incre-
mental impedance. This negative impedance may destabilize
the input filter of the converter if the filter is not properly
damped [1]. Similarly, even if the filter and converter are
stable when supplied by an ideal (zero impedance) source,
instability may emerge when connected to a power system
with non-negligible source impedance.

Both of these problems, internal stability and intercon-
nected system stability respectively, have been extensively
studied. The prevailing method for DC systems is to assess
stability by examining the impedance ratio of the source
impedance to load impedance at a given interface [2]. This
ratio is plotted on the Nyquist plot. Given an independently
stable source and load, encirclement of the (—1,0j) point
indicates the interconnected system will be unstable. If the
Nyquist plot does not encircle this point, the system will
be stable in a small-signal sense. Similar impedance-based
methods exist for AC systems through the use of rotating
reference frames which transform the sinusoidal signals to
DC signals, allowing the system equations to be linearized
[3].

Both AC and DC impedance methods are a form of small-
signal (linear) analysis. Small-signal analysis gives no indica-
tion of the magnitude of perturbations from which the system
can stably recover. Further, it provides no proof that the
system can successfully transition between different small-
signal stable operating points. Addressing these concerns is
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the focus of a large-signal stability analysis. For a review of
definitions, the reader is referred to [4].

PEDs admit a near-infinite number of possible operating
points due to changes in both load power consumption (e.g.
a motor drive draws more power at full speed, maximum
torque) and plant configuration (sources and loads being
connected/disconnected). While it is impossible to exam-
ine every possible operating point, methods exist [5] for
conservatively bounding the set of source impedances and
load impedances to ensure that all operating points are
small-signal stable. It is standard practice to require that
all operating points have a minimum gain margin (typically
3dB to 6dB) and phase margin (typically 30° — 60°) on the
Nyquist plot. A review of small-signal stability criteria for
DC systems can be found in [2].

While the impedance methods give no indication of large-
signal stability, for systems that slowly vary their operating
point (e.g. a motor drive ramping up), having all operating
points be small-signal stable typically results in a system that
can stably transition between operating points. Multiple air-
craft and naval power systems ships have been successfully
integrated while relying only on small-signal analyses plus
simulation to ensure system stability.

Future sensors and weapons such as high-power radars,
railguns, and high-energy lasers present new challenges to
the existing methods of stability analysis due to their rapid
variations in power consumption (and associated operating
point). This can result in significant voltage swings on
the input supply voltage, causing large deviations from the
equilibrium condition at which point the linear analysis is
no longer valid. This paper demonstrates how nonlinear
analysis tools relying on sum-of-squares optimization may
be utilized to analyze large-signal stability in pulsed constant
power loads. By pulsed constant power load we mean a
load that instantaneously switches between different power
consumption levels (e.g. off/on) and draws current to exactly
consume the present power setting.

A. Related Work and Contributions

To the author’s knowledge, there is little work addressing
large-signal stability of pulsed loads from an analytical (vice
simulation-based) standpoint. In [6] the author’s study the
stability of periodic pulsed loads using an extension of
Lyapunov techniques known as a Hamiltonian surface. How-
ever, the method ultimately relies on extensive numerical
simulation due to the lack of a closed form representation of
the model.



We leverage two well-established techniques (polytopic
modeling, sum-of-squares (SOS) optimization) for obtaining
an estimate of a nonlinear system’s region of attraction
(ROA). Both methods have been successfully applied to
analyzing constant power loads in existing works [7], [8],
[9]. Our main contribution is to show how these techniques
can be leveraged for analyzing pulsed loads. Additionally,
we provide a comparison on realistic models which reveals
the strength of sum-of-squares optimization. Finally, our ex-
amples demonstrate how small-signal metrics (gain margin,
phase margin) are a poor surrogate for large-signal stability
of pulsed loads.

B. Organization

The rest of this paper is organized as follows. Section
I provides a brief review of local stability analysis and
methods for obtaining an estimate of the region of attraction.
Section III studies the large-signal stability of three pulsed
load models of increasing complexity. Section IV concludes
the paper.

II. PRELIMINARIES

We first briefly review sum-of-squares optimization. This
material is largely summarized from [10], [11] to which the
reader is referred for a more comprehensive introduction. We
then review how these methods can be applied to Lyapunov-
based stability analysis.

A. Sum-of-Squares Optimization

Let x1,...,x, denote the elements of a vector variable
x € R™. Recall that a monomial is a product of variables
z1,...,T, With non-negative integer exponents. The degree
d of a monomial is the sum of the exponents. For example,
x3x9 is a monomial of degree 4. A polynomial is a finite lin-
ear combination of monomials. The degree of a polynomial
is the highest degree of its monomials.

Definition 1 ([10]). A polynomial p(x) is a sum-of-squares
polynomial if there exists polynomials g1(x), ..., gr(z) such
that p(z) = S2F_, gi(z)2.

Remark. It is obvious that any SOS polynomial is non-
negative for all x € R"™.

Let > [x] denote the set of SOS polynomials in the
vector variable . We indicate that a given polynomial is an
SOS polynomial by p(z) € > [x]. The following theorem
establishes a link between SOS polynomials and positive
semidefinite matrices.

Theorem 1 ([10]). A polynomial p(x) of degree 2d is a sum-
of-squares polynomial if and only if there exists a positive
semidefinite matrix Q such that p(z) = z(2)T Qz(x) where
z(x) is a vector of monomials up to degree d.

The form z(x)TQz(z) is called a Gram matrix represen-

tation. If the Gram matrix () is positive semidefinite than
2(2)TQz(x) > 0V z € R™ and we can write the polynomial

p(z) as a sum-of-squares. The following example taken from
[11] demonstrates this decomposition.

p(x) = o3 + 221 + 22320 — 2323 4 513
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Given a specified vector of monomials z(z), the search
for a matrix @) yielding an SOS decomposition p(x) =
2(2)TQz(x) can be formulated as a linear matrix inequality
which can be readily solved using semidefinite progamming.

B. Lyapunov Stability Analysis

Consider an autonomous nonlinear dynamical system of
the form:

&= f(x(t) ey

Where z € R™, f : R* — R” and f is locally Lipschitz on
R™. By an appropriate change of coordinates, let the origin
be an equilibrium point, f(0) = 0. Denote by ¢(xg,t) the
solution to (1) with initial condition x(0) = xg.

Definition 2 ([13]). The region of attraction is defined as
the set of all initial conditions that converge back to the
equilibrium point: 2 = {x € R™ : lim;—, oo ¢(0,t) = 0}.

Determining the exact ROA is difficult for general nonlin-
ear systems. Instead, most methods focus on obtaining inner
estimates of the ROA by finding invariant subsets which are
defined as follows.

Definition 3 ([13]). A set of states M is called an invariant
set of (1) if for all g € M, ¢(xg,t) € MV ¢ > 0.

A Lyapunov function V() characterizes invariant subsets
of the ROA:

Theorem 2 ([13]). Let v be a positive scalar. If there exists
a continuously differentiable function V() : R™ — R such
that:

V() =0,V(z) >0V a#£0
QV,v) ={z e R" : V(z) < v}is bounded
QV,y) C{z e R" : VV(z)f(x) < 0}

Then for all x € Q(V,~) the solution ¢(x,t) € QV,y) V1 >
0 andlim;_, o, ¢(20,t) =0

C. Region of Attraction Estimates via Sum-of-Squares

In general, finding Lyapunov functions to prove global
or local stability of dynamic systems is a difficult process
when done manually. By restricting our search to polynomial
dynamic systems and polynomial Lyapunov functions, we
can leverage sum-of-squares optimization to find candidate
Lyapunov functions satisfying the conditions of Theorem 2.



For example, proving global stability can be done with a
Lyapunov function satisfying the following conditions:

Vi) >0V ax#0,V(0)=0
VV(z)f(z) <0V xz#0

If we limit our search to SOS polynomial Lyapunov func-
tions, these conditions can be formulated as the following
SOS optimization problem:

Viz) —li(z) € Z[l‘]

—(VV(2)f(z) = l2(2)) € Y _[2]
V(0)=0

Recall that SOS polynomials are non-negative while Lya-
punov functions must satisfy strictly positive (or strictly neg-
ative) conditions. The functions /1 () and Il5(x) are positive
definite functions that ensure the resulting inequalities are
strict (i.e. V(z) > 0 for z # 0). A common choice is
I(z) = exTx where € is 107C.

For systems that are not globally stable, we instead aim
to prove local stability by finding an estimate of the ROA.
The previous problem can be modified using a variant of the
S-procedure [14].

max vy

5., V(e) = hz) e [al,
—(VV (@) f(2) = la(2)) = s1(2)(V(2) =) € Y _[a],
si(z) € Y [a]

This optimization problem attempts to find the largest set
Q(V,~) of a given Lyapunov function V(x) that ensures
stability. This set is then an estimate of the ROA. The term
s1(x)(V(x) — ) arises from applying the S-procedure. It
serves to relax the condition VV(x)f(z) < 0 to only be
required for x € Q(V, 7).

A given locally stable system may admit multiple Lya-
punov functions, each of which provides a different inner
estimate of the ROA. By introducing a shape function h(x)
it is possible to find Lyapunov functions that maximize the
inner estimate in a given direction. This is done by solving
the following SOS optimization problem.

max [

s.t. V(z)—li(z

The decision variables are V(z), s1(x), s2(x),7, and S.
The resulting optimization problem contains products of de-
cision variables (s1(x)V (), Bs2(x) which leads to a bilinear
semidefinite program which is nonconvex and difficult to
solve. A common alternative is the V-s iteration in which
one alternates between optimizing one term of a bilinear

expression which holding the other fixed [11]. This method
was used for the results that follow.

D. Region of Attraction Estimates via Polytopic Modeling

Sum-of-squares works directly with nonlinear polynomial
dynamics. Alternatively, polytopic (or Takagi-Sugeno) mod-
eling may be used to represent a nonlinear model through
a convex combination of linear models. Given ¢ nonlin-
earities in the model each of which has a minimum and
maximum value, the nonlinear model can be represented by
a weighted combination of 29 linear models, each with state
matrix A;,7 = 1,...,2% These represent the vertices of
the polytope formed from all combinations of the minimum
and maximum values of the nonlinearities. Stability can then
be established by finding a common quadratic Lyapunov
function V (z) = o7 Px for the family of matrices A; where
P is positive definite [14]. If the polytopic model is a valid
representation of the nonlinear model over the whole state
space R™, global stability follows. If the polytopic model
is valid only over a subspace S C R" then an estimate of
the region of attraction is given by Q(V,v) = {z € R" :
V(z) < ~} where v is the maximum level set of V(z)
contained within S. The resulting linear matrix inequality is
given by:

AfP+PA,-<0
P>0

(i=1,...,29

Where > and < indicate positive definite and negative def-
inite constraints respectively. This method was first applied
to constant power loads in [7].

III. PROBLEM SETUP

We consider three pulsed load models of increasing com-
plexity. While some pulsed loads (e.g. radar) have multiple
power consumption levels, for simplicity we will focus
on the case in which a pulsed load wants to transition
from drawing no power (P = 0) to drawing power P,,
instantaneously. This corresponds to switching between two
equilibrium points, z,¢f and 2,,. Let €2,¢¢ and Q,,, be the
ROAs of the equilibrium points corresponding to the load
being off and on respectively. It is straight-forward to see
we can only pulse the load (i.e. transition from Z,¢¢ t0 Zop)
if xofr € Qoy. A similar remark holds for transitioning from
on to off. However, the models considered here are linear and
stable when the load is off, thus 2,7y = R™ and transitioning
from on to off is always stable. Thus we focus solely on the
pulsing on case.

For each model we attempt to find the maximum power
level P4, whose ROA estimate encloses . f, proving we
can stably pulse the load. We do this using both the polytopic
approach and SOS approach. For the SOS approach, we use
a shape factor h(z) that expands the ROA estimate in the
direction of x,¢, as this is the point we hope to enclose.

A. 2nd-Order Pulsed Constant Power Load Model

We first consider a 2nd-order pulsed load model consisting
of an inductor-capacitor (LC) filter supplying a constant



power load with power P. The continuous dynamics are
given by:

dig, .

—— = VUde — TLl — U

dt dc L'L C

dUC P
2 i - —

dt L Vo

The parameters are taken from [7] and listed in Table I.
As the author’s of [7] point out, the large inductance is
unrealistic but was chosen to yield a model with a limited
region-of-attraction. Let (i7?,vc!) denote the equilibrium
point for a given power P. We shift the equilibrium point
to the origin by rewriting the system dynamics in terms of
states ©1 = ig, — i}, x2 = vo — VG-

d.’L‘l —rr 1
=——T1 — T

dt L L
drz _ 1, L L.
a — ot ve 4+ 2 ) Cogd 2

Remark. The term (vg! +a5)"" is the sole source of
nonlinearity in constant power load models. This term is
not polynomial and therefore we cannot directly apply SOS-
based methods. To address this we rewrite the system dy-
namics as:

- g(z)
fx) = fo(x) + ()
where
fo(z) = {EL:LE; ifm] ,g(x) = l_cf(;’x2]

We then multiply condition —(VV (z)f(x) — la(z)) €
S7[z] by h(z)? to obtain the equivalent condition
—(VV(2)(fo(2)h(z)? + g(x)h(2)) — la(x)h(2)?) € Y[x].

Within the V-s iteration this yields a modified constraint

= (VV(@)(fo(2)h()? + g(2)h(z)) — l2(2)h(x)?)
—s1(@)(V(z) —7) € ) o]

We note that a similar approach is done in [9]. Alternatively,
one could approximate the term h(z) using a Taylor series
expansion.

Using the SOS method, we are able to establish stable
pulsed load operation up to 482W. The polytopic method
gave identical results. Figure 1 shows the ROA estimate
with the pulsed trajectory plotted. Because x,7y is within
our estimate of the {2,, we conclude that the system can
pulse to 482W from no load. The trajectory starts at z,75 =
(0A4,200V) and spirals to z,, = (2.44A4,197.3V). Figure
2 plots the trajectory against time. The Lyapunov function
V(z) is also plotted, confirming its monotonic decrease
along the trajectory.

Figure 3 shows the source impedance (2nd-order LC filter)
and load impedance (constant power load) at 482W opera-
tion. The gain margin is 0.97dB, well below standard design
metrics. For this model, it was determined via simulation

that pulsing from no load could be stably done up to 537kW
at which point the small-signal stability margin is 0.03dB
(1. This gap between the 482W and 537W is indicative of
how conservative our estimates of the ROA are. At 542kW
the system is small-signal unstable. Thus for this model, an
operating point being small-signal stable is a surprisingly
good indicator that one can transition to this condition from
no load.

TABLE I
2ND-ORDER MODEL PARAMETERS

Ve L rr C
200 39.5mH 1.1Q  501uF

Fig. 1. 2nd-order model ROA estimate for 482W
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Fig. 2.

2nd-order model pulsing from OW to 482W

B. 3rd-Order Pulsed Constant Power Load Model

The previous model had unrealistically large inductance
and yet still can easily be pulsed from off to on for nearly all
points that are small-signal stable. This raises the question of
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whether large-signal stability is of practical interest for PEDS
containing pulsed loads. Restated, can realistic systems have
acceptable small-signal stability margins (e.g. 6dB) and yet
have unacceptably small regions of attraction?

We switch to a more realistic model in which the induc-
tance and capacitance have reasonable values relative to one
another. We then introduce a damping capacitor to minimize
the LC resonance. In [15] the following design equation
is given for finding the optimal damping resistance 74 to
minimize the peak impedance of the LC filter:

(2+n)(4+3n)
ra=Ro\| 55—~

2n2(4+n)
where Ry = ,/% and n = % The capacitance ratio n is
typically between 2 to 5. The damping resistance is placed
in series with the damping capacitor. The resulting model is:

Ldi L .
— =14 — TLiL — U
dt dc L'L c
dv v — P
o2C = Je—bed
dt rq Ve
dv Vo — U
c, Ccd _ Vo — Vcd
dt Td
We use n = 4.6 to achieve 6dB of gain margin when

operating at P,, = 1MW with V;. = 1000. Table II lists
the parameters. Figure 4 shows the source impedance (3rd-
order LC filter) and load impedance (constant power load)
at IMW operation. Despite the larger margin than the 2nd-
order model, Figure 5 shows the bus voltage collapse when
attempting to pulse to IMW from a no load condition. If
reduced to 997kW (not shown), the load can be pulsed on.
Using the SOS method, we are able to establish stable pulsed
load operation up to 940kW. This is within 6% of the true
maximum capability. The polytopic method yields smaller
estimates of the ROA and is only capable of certifying
stable pulsed load operation up to 532kW. Figure 6 compares
the ROA estimate achieved by both methods for 940kW.

Overlaid is the trajectory when pulsing from no load to
940kW. As expected, the trajectory remains within the SOS
ellipsoid.

TABLE 1II
3RD-ORDER MODEL PARAMETERS

Vde L TL C Od
1000 4mH 0Q 10mF  45mF
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0.3593
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Fig. 4. 3rd-order model source and load impedance
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C. 5th-Order Pulsed Constant Power Load Model

We add a simple source model to the previous 3rd-
order model. The source model consists of bus capacitor C}
with voltage vcp. A proportional-integral controller tracks
the voltage reference v,y for the bus by injecting current
into the capacitor. The controller gains are k, and k; with
associated error state e,. The injected source current is i, =
kp(vrer — vow) + kie,. By appropriate choice of the gains,
this model can roughly approximate the voltage regulation
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dynamics of a power electronic source (high bandwidth) or
generator-rectifier unit (low bandwidth). The resulting model
is as follows:

dvcy .
Cy - kp(vrep — vow) + kiey — i,
ey
= Uref —UCh

dig,
L— =wvg.—rpir, — v
7 de — TLIL — VO
d’UC vo — Vod P
ek SR L SR (0 S

dt T4 Vo

dvcqa  vo —wvcd
C =

d dt rq

Representative of a large generator-rectifier unit, the voltage
regulation loop is tuned to a bandwidth of approximately
0.75Hz. Table III lists the source model parameters. The
source impedance and load impedance at the bus interface
(vew, i) is shown in Figure 7. The gain margin of the
impedance ratio is 11.7dB.

The previous study established that the load can be stably
pulsed up to 997kW when supplied by an ideal voltage
source (no impedance). SOS optimization was able to certify
stability up to 940kW. With the regulated (non-ideal) source,
simulation studies showed that the load is able to be pulsed
up to 660kW. The SOS method certifies stable pulsed load
operation up at 515kW. The polytopic method is able to
certify stable operation up to 46kW. Here we see that the
polytopic approach can be extremely conservative.

Figure 8 shows the voltage and current at the bus interface
during a 515kW pulse from no load. The Sth-order model
has a fast oscillatory mode which quickly decays followed by
a slow oscillatory mode. Although we cannot visualize the
Sth-order ROA estimates, Figure 9 shows a slice in which the
capacitor voltages are set equal and source and load current
are set equal. This is representative of equilibrium conditions.
The bus voltage vcp and inductor current ¢y, in pulsing from
no load (04, 1000V) to 515kW (515A,1000V) is overlaid.
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TABLE III
5TH-ORDER MODEL PARAMETERS

Uref Ch kp ki
1000  500mF 2 0.75

D. Implementation Details

In all the above examples, we limited our SOS opti-
mization problems to searching over quadratic functions. In
future work we plan to explore higher-order polynomials
(e.g. quartics) to further reduce the conservatism in our ROA
estimates. All examples were solved using MOSEK [16] in
conjunction with YALMIP [17] in MATLAB 2017b.

IV. CONCLUSION

In this work we demonstrated how sum-of-squares opti-
mization can be leveraged to analyze the stability of pulsed
power loads. Unlike the polytopic approach, the SOS results
were not excessively conservative. Further, they provide
rigorous proofs of stability in pulsed systems where relying
on standard small-signal metrics can be misleading. This
suggests that SOS optimization is a useful building block
for nonlinear analysis and synthesis tools in naval power
systems. In future work we plan to examine more compli-
cated models and leverage SOS optimization methods for
synthesizing control algorithms to stabilize pulsed power
systems.
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