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Abstract— We study the problem of maximizing energy trans-
fer to a load in a DC microgrid while respecting constraints
on bus voltages and currents, and accounting for the impact
of neighboring constant power loads. Both the objective and
dynamic constraints give rise to indefinite quadratic terms, re-
sulting in a non-convex optimization problem. Through change
of variables and relaxations we develop a second-order cone
program that exactly captures the indefinite constraints and
closely approximates the indefinite objective. We demonstrate
how this can be used to design nearly optimal charging profiles
for periodic pulsed loads in real time.

I. INTRODUCTION

Pulsed loads are electrical loads that consume large
amounts of energy near instantaneously. Classical exam-
ples of technologies that use pulsed power include particle
accelerators and lasers. More recently, within the marine
and aerospace communities, pulsed power loads are being
installed on ships and aircraft. Examples include electro-
magnetic launch and recovery systems, solid-state radars,
and high-energy lasers. These loads are stressing to the host
power systems which have limited generating capacity and
are not designed to accommodate rapid power variations. To
mitigate this stress, pulsed loads are often supported by an
energy storage device such as a capacitor bank or flywheel
[1].

While energy buffers provide the means for reducing
the transient demand placed on the supplying generators,
it is often desirable to charge these devices as quickly as
possible to allow repetitive use of the pulsed load. Due to
the limited voltage regulation capabilities of the generators,
rapid variations in current flow can easily lead to voltage
sags, which violate operational specifications, and can lead
to equipment damage or loads shutting down. This problem is
exacerbated by neighboring high-bandwidth power electronic
loads which are common in such microgrids and act as
constant power loads. As voltage drops, these loads consume
more current, leading to further voltage sag and possible
instability [2].

Power management algorithms in ship and aircraft mi-
crogrids are often centralized with full control of the system
configuration and scheduling of loads. As such, it is possible
to coordinate the sources and loads to rapidly charge an
energy storage device. For example, the source voltage
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commands may be temporarily increased while the device
charges. We use the term charging profile to denote the re-
sulting system state and input trajectory. An optimal charging
profile is one that achieves a given energy demand E∗ in
minimum time while keeping the system within operational
specifications.

The problem of determining an optimal charging profile
was introduced in [3]. There the authors derived a closed-
form expression for the charging profile that minimizes the
power ramp rate while ensuring a given energy transfer. The
profile is seen to be a paraboloid. While straight forward, the
solution makes no account of system dynamics or constraints
placed on power, voltage, or current. In [4] the authors
apply linear model predictive control (MPC) techniques to
coordinate power supplied to ramped loads in a shipboard
application. Energy and power constraints are addressed but
circuit dynamics (voltage, current) are neglected. Results are
shown using ideal sources (negligible impedance) to prevent
the possibility of voltage sags. In [5], the authors develop a
feedback-linearization control algorithm for smoothly charg-
ing an energy storage device while minimizing frequency
deviations on an AC microgrid. The algorithm is based on a
heuristic trapezoidal power profile consisting of five stages.
The algorithm neglects the dynamics of neighboring loads
and does not ensure constraints on system voltage and current
are respected.

In this work, we develop an optimization-based approach
for determining the maximum amount of energy that can
be transferred to an energy storage device over a finite
time duration. We account for the dynamics of both the
generator and connected constant power loads, ensuring
voltage and current constraints are satisfied. In its original
form, the problem is a quadratically-constrained quadratic
program (QCQP) with an indefinite objective and indefinite
constraints. We develop a closely related second-order cone
program (SOCP) that utilizes a linear approximation of the
indefinite objective. A numerical study demonstrates how this
can be used to design nearly optimal charging profiles for
energy storage devices that must be periodically charged.

The rest of the paper is organized as follows. Section
II introduces the power system model utilized. Section III
poses the maximum energy transfer problem and develops
an SOCP-based solution. Section IV leverages this result to
find the minimum-time to charge an energy storage device
subject to periodicity constraints. Section V concludes the
paper and discusses future directions.

2020 European Control Conference (ECC)
May 12-15, 2020. Saint Petersburg, Russia

978-3-907144-02-2©2020 EUCA 1713

Authorized licensed use limited to: Johns Hopkins University. Downloaded on April 15,2022 at 11:23:33 UTC from IEEE Xplore.  Restrictions apply. 



II. MODEL DESCRIPTION

We consider a DC source supplying a constant power
load and an energy storage device as shown in Figure 1.
The source model is composed of a capacitor C and a
current source ig driven by a proportional-integral voltage
regulator with error integral term e. The regulator tracks
the commanded bus voltage v̄. Although simple, this model
is adequate for capturing the relevant voltage regulation
dynamics of a synchronous generator-rectifier supplying a
DC microgrid [2], [6].

The source supplies two loads which are current sinks
driven by appropriate control laws. The first is an energy
storage device with current flow is. The second represents
the aggregate behavior of connected constant power loads
with total power consumption Pc and current flow ic. This is
representative of power electronic loads which have current
regulation bandwidths orders of magnitude faster than the
voltage regulation capabilities of synchronous generators.

The continuous-time dynamics are given by:

C
dv

dt
= (kp(v̄ − v) + kie)− is − ic ,

de

dt
= v̄ − v .

(1)

The generator and constant power load currents are:

ig = (kp(v̄ − v) + kie), ic =
Pc

v
.

Remark. We use this model to simplify the presentation.
However, the results developed herein are easily modified to
accommodate more detailed linear source models, additional
linear loads, and constant power loads with time-varying
power consumption.

ig

+

−

v ic=
Pc

v is

Fig. 1: Microgrid Model

III. PROBLEM STATEMENT

Our objective is to maximize the energy transferred to
the energy storage device over a finite time horizon. It is
assumed that both the generator’s commanded voltage and
the energy bank’s current are control signals available to
us. This is realistic for microgrids on ships and aircraft
which typically have centralized control. However, either of
the control signals can be eliminated by appending equality
constraints in the optimization problem (e.g. v̄ = c where c
is some constant).

We assume the dynamics are appropriately discretized
with time step ∆t, yielding the model

xk+1 = Axk + Bv v̄k + Bi(is,k + ic,k) (2)
Pk = vk(is,k + ic,k) (3)
Pc = vkic,k (4)

where subscript k denotes the time index, xk =
[
vk ek

]T
and Pk denotes the total power supplied by the generator at
time k.

In the following development, we assume that the bus volt-
age v is constrained to be strictly positive. We also impose a
non-negativity constraint on the total power supplied by the
generator, Pk ≥ Pmin ≥ 0. This constraint is common and
can arise from both physical and operational constraints. For
example, if a rectifier bridge is used to convert the generator’s
AC output voltage to DC, the presence of diodes physically
prevents negative current flow (and therefore reverse power
flow).

Let Tf the denote the time horizon and N =
Tf

∆t be the
number of steps. Using Euler integration to calculate energy
from power, the maximum energy transfer problem is then
written as:

min −∆t

N−1∑
k=0

Pk − Pc

s.t. xk+1 = Axk + Bv v̄k + Bi(is,k + ic,k),

Pk = vk(is,k + ic,k),

Pc = vkic,k,

Pk ≥ Pmin,

F

 x
is + ic

v̄

 ≤ g

(5)

All constraints with terms containing subscript k apply to all
time indices k = 0, . . . , N . Here the last inequality is used
to capture any linear constraints on the states and control
inputs with matrix F and vector g appropriately defined. It
is readily seen that both the objective and the bilinear power
constraints are indefinite. The resulting optimization problem
is a non-convex QCQP that is NP-hard in general.

Remark. Maximizing power transfer over a finite horizon
falls within the category of economic model predictive
control [7]. Economic MPC seeks to maximize general per-
formance indices in place of traditional tracking problems.
Indefinite objectives frequently arise involving the product
of input controls and output signals [8]. In some instances,
often linked to dissipativity properties, the resulting problem
is convex once projected onto the dynamic constraints [9].
For the problem at hand, if the control is limited to is
and no constant power load is present the system dynamics
are passive with respect to input is and output v (i.e.
is,kvk ≥ 0 ∀ is,k ∈ R). By projecting the quadratic
program onto the linear dynamic constraints (often referred
to as condensed MPC), the indefinite quadratic cost function
becomes convex. However, once v̄ is introduced as a second
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input, the condensed MPC formulation is no longer convex.
Further, it cannot address the nonlinear constant power load
dynamics.

Remark. To support our change of variables to come, Prob-
lem (5) assumes current constraints apply to the total load
current instead of to is and ic separately. This is not overly
restrictive as the constant power load current is algebraically
related to the bus voltage v. Thus we can approximate desired
constraints on ic by appropriately constraining v. Constraints
on is can similarly be approximated through a combination
of constraints on v and i that take into account the additional
current expected from the constant power load.

We now eliminate the bilinear power constraints. Letting
i = is + ic, the resulting problem is rewritten as:

min −∆t

N−1∑
k=0

(Pk − Pc)

s.t. xk+1 = Axk + Bv v̄k + Biik,

Pk = vkik,

Pc = vkic,k,

Pk ≥ Pmin,

F

xi
v̄

 ≤ g

(6)

The variable ic,k is only constrained by the equality Pc =
vkic,k. As Pc is a constant, the variable ic,k has no impact on
the problem and we can eliminate it without consequence.
We next define zk =

√
Pk, representing the square root of

the total power supplied and rewrite the problem using this
variable. For reasons that will become apparent, we write the
equality constraint as two inequalities.

min −∆t

N−1∑
k=0

(z2
k − Pc)

s.t. xk+1 = Axk + Bv v̄k + Biik,

zk ≥
√
Pmin,

vkik ≤ z2
k ≤ vkik,

F

xi
v̄

 ≤ g

(7)

Consider now the following relaxed problem in which we
drop the lower bound on z2

k.

min −∆t

N−1∑
k=0

(z2
k − Pc)

s.t. xk+1 = Axk + Bv v̄k + Biik,

zk ≥
√
Pmin,

z2
k ≤ vkik,

F

xi
v̄

 ≤ g

(8)

The following lemma shows that, despite enlarging the
feasible set by removing the equality constraint, solutions
obtained from the relaxed problem satisfy the equality con-
straint.

Lemma 1. Solutions of Problem (8) satisfy z2
k = vkik for

all k = 0, . . . , N .

Proof. We show this by contradiction. Let S∗ =
{v∗, e∗, i∗, v̄∗, z∗} be an optimal solution of Problem (8)
with cost J∗. Assume that for some k, the inequality is strict
(z∗k

2 < v∗ki
∗
k). Let S = {v∗, e∗, i∗, v̄∗, z̃} with z̃2

k = v∗ki
∗
k.

Note that z̃k > z∗k ≥ 0. Thus S is a feasible solution as the
inequality Pmin ≤ z̃2 holds and the remaining inequalities
do not involve z̃. The resulting cost is J = J∗+∆t(z2

k− z̃2
k)

and therefore J < J∗. This contradicts S∗ being an optimal
solution. Therefore solutions of Problem (8) have z2

k = vkik
for all k.

Lemma 1 allows us to drop the constraint z2
k ≥ vkik with-

out introducing spurious solutions. However, the remaining
quadratic inequality is indefinite. Combined with our stated
assumptions on non-negativity of vk and ik, the feasible set
is described by a rotated second-order cone. This can be
transformed into a standard second-order cone constraint as
given by the following standard result.

Lemma 2. Given the constraints vk ≥ 0 and ik ≥ 0, the
power constraint z2

k ≤ vkik can be rewritten as the following
second-order cone constraint:∥∥∥∥[ 2zk

ik − vk

]∥∥∥∥
2

≤ ik + vk (9)

Proof. See [10].

Taken together, lemmas 1 and 2 provide convex repre-
sentations of the feasible set for Problem (5). The only
remaining source of non-convexity is the concave objective
J(z) = −∆t

∑N−1
k=0 (z2

k − Pc). We now develop a surrogate
linear objective which approximates the concave objective.
For clarity, we drop Pc from the objective as it is constant.

Let z∗ be the optimal solution to (8). Consider a Taylor
expansion of the cost function with z̃ = z − z∗:

J(z̃) = −∆t

N−1∑
k=0

z∗k
2 + 2z∗k z̃k + h.o.t.

Assume there is a maximum power Pmax that can be trans-
ferred in the microgrid.1 If we maximized energy transfer
over an infinite horizon, the system would be operated at
Pmax for almost all time indices (z∗k

2 = Pmax). Neglecting
higher order terms, the linear objective function would be:

J(z̃) = −∆t

∞∑
k=0

Pmax + 2
√
Pmaxz̃k

1This may be directly imposed or be an indirect consequence of con-
straints placed on voltage and current.
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Minimizing this objective simply involves maximizing the
sum of z̃ as all terms are weighted equally. This motivates
us to replace our original objective with this linear objective.
The resulting problem formulation is a second-order cone
program which can be reliably solved.

min −
N−1∑
k=0

zk

s.t. xk+1 = Axk + Bv v̄k + Biik,

zk ≥
√
Pmin,∥∥∥∥[ 2zk

ik − vk

]∥∥∥∥
2

≤ ik + vk,

F

xi
v̄

 ≤ g

(10)

Theorem 1. Under the constraints v > 0, is ≥ 0, Pmin ≥
0, Problem (5) is feasible if and only if Problem (10) is
feasible. Further, solutions to Problem (10) provide sub-
optimal solutions to Problem (5).

Proof. The feasibility proof follows immediately from Lem-
mas 1 and 2 which showed that, despite enlarging the feasible
set, optimal solutions still satisfied the constraints of Problem
(5). Sub-optimality follows from the use of a surrogate
objective in place of the original objective.

IV. MINIMUM-TIME CHARGING OF PERIODIC LOADS

Problem (10) provides a convex method for obtaining sub-
optimal solutions to the non-convex Problem (5) when the
bus voltage and total load current are constrained to be
strictly positive and non-negative respectively. The linear in-
equality constraint pair (F, g) affords us flexibility to impose
additional constraints on the problem. In the following we
demonstrate how this can be used to design periodic charging
profiles for loads that are repetitively exercised.

Consider a periodic pulsed load that requires a minimum
stored energy E∗ prior to use. Our objective is to find the
minimum time required to charge this load with the con-
straint that the system starts and ends at the same operating
point (v0 = vN , i0 = iN ). This periodic constraint allows
the resulting charge profile to be repeatedly executed. In
addition to the energy storage device, a constant power load
(Pc = 300kW) is connected. For the given example, we set
the minimum generator loading equal to the constant power
load, Pmin = Pc. This indirectly prevents the energy storage
device from supplying power to the load as the generator
is always producing at least 300kW. We impose minimum
and maximum constraints on the voltages and currents along
with constraints on their rate of change. These boundaries
can be used to approximate limits on the rate at which
power is varied. Finally we impose a voltage-dependent
upper limit on the maximum total current. This approximates
a maximum power limit of 500kW. The dynamics are given
by (1) discretized with a time step ∆t = 0.05s using a
zero-order hold. Table I lists the parameters. The controller

tuning achieves a voltage regulation bandwidth of 8 Hz,
representative of a synchronous generator-rectifier.

min −
N−1∑
k=0

zk

s.t. xk+1 = Axk + Bv v̄k + Biik,

zk ≥
√
Pmin,∥∥∥∥[ 2zk

ik − vk

]∥∥∥∥
2

≤ ik + vk,

v0 = vN = vnom, v̄0 = v̄N = vnom,

e0 =
Pc

v0ki
, i0 = iN =

Pc

v0
,

vmin ≤ vk ≤ vmax, vmin ≤ v̄k ≤ vmax,

imin ≤ ik ≤ imax, ik ≤ s1(vk − s2) + imax,

−∆vmax ≤ (∆t)−1(vk+1 − vk) ≤ ∆vmax,

−∆vmax ≤ (∆t)−1(v̄k+1 − v̄k) ≤ ∆vmax,

−∆imax ≤ (∆t)−1(ik+1 − ik) ≤ ∆imax

(11)

Remark. In normal power system operation we would likely
only constrain the voltage command (and not the voltage) as
the two would be nearly equivalent. Here we are aggressively
varying both the voltage command and current flow. Given
the generator’s limited regulation bandwidth, the voltage
command and actual command are clearly not the same as
seen in Figure 5. To ensure we respect operational constraints
we limit both.

Remark. We do not impose periodicity constraints on the
voltage error integral term e as this is a virtual (vice physical)
state which can be reset by the control algorithm. The
initial constraint on e represents an equilibrium condition.
Periodicity is imposed on the current i as it is a physical
signal which cannot be discontinuous.

As the maximum energy transfer monotonically increases
with the time duration Tf = N∆t, determining the minimum
time to achieve a given energy demand E∗ can be solved via
bisection. To show solution trends, we instead exhaustively
vary the time duration from 1s to 50s in 1 second increments
and solve Problem (11) for each case using CPLEX 12.9.

Figure 2 shows the energy transferred to the storage device
for each solution. Note that we are plotting the original
objective here (∆t

∑N−1
k=0 vkis,k) and not the linear surrogate

objective. For reference we also plot the maximum energy

0 5 10 15 20 25 30 35 40 45 50

0

5

10

Fig. 2: Max. Energy Transfer for Various Time Durations
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TABLE I: Microgrid Parameters
C kp ki Pc vnom vmin vmax ∆vmax imin imax ∆imax s1 s2

0.01F 0.5 0.025 300kW 1000V 800V 1200V 80V/s 0A 525A 500A/s -0.4375 A/V 952.4V
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Fig. 3: QCQP and SOCP Solutions for 50s Charging Profile

transfer possible if the system had no constraints on initial or
final states. In this scenario the system would be operated at
the maximum power of 500kW indefinitely. Of this, 200kW
would be going to the energy storage device, which is the
line we plot. For comparison, we also solve the non-convex
QCQP using IPOPT 3.11.0 [11] with gradients and Hessians
supplied by CasADi [12]. For horizon lengths up to 10
seconds we confirmed with YALMIP’s [13] global solver
BMIBNB that IPOPT is indeed finding the global solution
(to within 0.1%). Solutions to longer horizon lengths were
not proven global due to excessive runtimes. With respect
to the original objective, our surrogate objective gave results
that were at most 0.26% sub-optimal relative to the local
solution returned by IPOPT.

Figure 3 plots the solutions obtained for a 50 second charg-
ing duration. Despite the different objectives, the profiles are
very similar with the QCQP formulation transferring slightly
more net energy. Figure 4 plots the phase-portrait of voltage
and current for the 50s charging profile obtained from the
SOCP formulation. The trajectory begins at (1000V, 300A)
and moves clockwise. The voltage drops while the current
increases, eventually reaching both the voltage lower limit
and current upper limit. The current is then held constant
while the voltage recovers. The current is then decreased
until we hit the maximum voltage limit 1200V. The current
continues to decrease to 1200V, 250A at which point the
energy storage device is no longer drawing current (only
the constant power load is). The trajectory moves along the
minimum power bound 300kW, and then experiences a short
additional power draw which returns the system to its starting
condition.

800 850 900 950 1000 1050 1100 1150 1200

250

300

350

400

450

500

550

Fig. 4: Maximum Energy Transfer for 50s Charging Profile

Figure 5 plots the time profiles of trajectories ranging
from 10s to 50s. While trends are evident in the voltage
and energy storage commands, they are not simple parabolic
or trapezoidal shapes as proposed in [3] and [5] respectively.
This supports the need for optimization-based approaches to
the design of charging profiles, rather than relying on pre-
specified stages.

Figure 6 plots the percentage error in the equality con-
straint z2

k = vkik. This numerically validates Lemma 1,
showing that the solutions satisfy z2

k = vkik to within solver
tolerances.

Figure 7 plots the solver runtimes for the SOCP and QCQP
formulations of Problem (11). Solutions were obtained on a
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Fig. 5: SOCP Solution for Various Charging Durations
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Fig. 7: Solver Runtime: SOCP (CPLEX) vs. QCQP (IPOPT)

laptop with an Intel Core i7-4800MQ CPU. On average, the
SOCP formulation is solved 87x faster than the non-convex
QCQP formulation.

V. CONCLUSIONS

This work considered the maximum energy transfer prob-
lem in a microgrid with constant power loads. In its orig-
inal form, the problem is a non-convex QCQP. A convex
approach based on second-order cone programming was
developed and leveraged to design periodic charging profiles.
Future work includes extending this result to AC microgrids
and further characterizing the conditions under which the
linear objective is a good surrogate for the non-convex
objective.
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