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Abstract— We study the problem of designing attacks to
safety-critical systems in which the adversary seeks to maximize
the overall system cost within a model predictive control
framework. Although in general this problem is NP-hard,
we characterize a family of problems that can be solved
in polynomial time via a second-order cone programming
relaxation. In particular, we show that positive systems fall
under this family. We provide examples demonstrating the
design of optimal attacks on an autonomous vehicle and a
microgrid.

I. INTRODUCTION

Safety-critical systems increasingly rely on distributed
feedback for their underlying control algorithms. In these
cyber-physical systems, the action of individual agents is
impacted by the state of other agents which is either sensed
directly or obtained over communication channels. Common
examples include, for instance, power grids and vehicle
platoons. Given the critical nature of these systems, it is
essential to ensure that the control algorithms utilized are
robust to adversarial attacks which can take many forms.

For example, in false data injection attacks, an adversary
takes control over communication channels and corrupts
the feedback data to compromise the system performance.
Much recent work has focused on designing and detecting
false data injection attacks within power systems [1]–[3].
Alternatively, instead of corrupting feedback channel infor-
mation, an attacker could compromise existing agents or
introduce new adversarial agents with the aim of degrading
system performance. Examples include adding a rogue car
to a vehicle platoon [4] or malicious demand response in
power grids [5]. Lastly, instead of injecting false sensor data
or introducing adversarial agents, the attacker might take
over the whole system and control it with an antagonistic
algorithm [6] that maximizes damage.

Performance of these cyber-physical systems is often
measured with respect to a convex quadratic cost function.
For example, consensus problems seek to minimize the
disagreement between agents. Regulation problems seek to
minimize the deviation from a desired equilibrium condition.
In designing attacks on these systems, it is therefore natural
to seek to maximize these same objectives. This leads to a
non-convex problem which is NP-hard in general. Due to the
computational complexity, suboptimal solutions are typically
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sought via convex-concave approximations [6], semidefinite
relaxations [3], or general nonlinear programming methods.
Alternatively, an attacker may avoid the non-convex problem
by selecting a target state (which is different from the sys-
tem’s intended operational state) and minimizing deviations
from it [7]. While the resulting problem is convex, the
choice of target state is arbitrary and up to the attacker to
determine. Thus the target state often acts as a surrogate for
true adversarial intentions.

This paper seeks a different approach. Instead of looking
for suboptimal or surrogate solutions, we focus on instances
in which the non-convex problem can be solved to global
optimality. By leveraging optimality guarantees for second-
order cone program (SOCP) relaxations of non-convex
quadratically-constrained quadratic programs (QCQPs), we
provide a characterization of a family of systems that are
highly susceptible to adversarial attacks. Surprisingly, the
characterized family includes, as a special case, positive sys-
tems with non-positive quadratic objectives and constraints.

This has application to many cyber-physical systems,
including micro-grids [8] and vehicle platoons [9] which
often exhibit positive dynamics. Our results suggest that
these systems are highly vulnerable to adversarial attacks and
promotes the need of further research into the development
of new methodologies that can make these systems less
vulnerable to such attacks.

The rest of the paper is organized as follows. Section II
introduces some preliminaries, including the formal defini-
tion of QCQP, an overview of the SOCP relaxation used in
this paper, and the definition of positive systems. Section
III formalizes the adversarial MPC problem to be used
in this paper, as well some useful reformulations. Section
IV establishes conditions under which a non-convex MPC
problem has an exact SOCP relaxation. Section V provides
a few numerical illustrations of our approach, and Section
VI concludes the paper and discusses future directions.

A. Notation

Let Sn denote the set of n × n symmetric matrices, N
denote the set of non-negative integers, N+ the set of positive
integers, and AT denote the transpose of a matrix A. Let aj
denote the element j of vector a ∈ Rn and [A]jk denote
element (j, k) of matrix A. The inequalities ≤, ≥ are to
be interpreted element-wise. In denotes the n × n identity
matrix, 0m×n the m×n zero matrix, and 1n a vector in Rn

with all entries equal to 1. We occasionally drop subscripts
where dimensions can be inferred from context. For A, B ∈
Sn, let A ·B =

∑n
j=1

∑n
k=1[A]jk[B]jk.
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II. PRELIMINARIES

A. Exact Solutions of Some Non-Convex QCQPs

We first review the main result of [10] regarding the condi-
tions under which non-convex QCQPs can be solved exactly
via a SOCP relaxation. Consider the following QCQP

min
z

zTQ0z + 2qT0 z + γ0

s.t. zTQiz + 2qTi z + γi ≤ 0, i = 1, . . . ,m
(1)

where z ∈ Rn, Qp ∈ Sn, qp ∈ Rn, γp ∈ R and p ∈
{0, 1, ...,m}. Define the following matrix:

Pp =

[
γp qTp
qp Qp

]
(2)

We rewrite the QCQP in homogeneous form as:

min
z

[
1
z

]T
P0

[
1
z

]
s.t.

[
1
z

]T
Pi

[
1
z

]
≤ 0, i = 1, . . . ,m

(3)

where z ∈ Rn, and Pp ∈ Sn+1 for p ∈ {0, 1, ...,m}.
Herein we make no assumptions about the sign definite-

ness of matrices Pp. When P0 contains at least one negative
eigenvalue, problem (3) is non-convex and NP-hard to solve
[11]. In [10] it was shown that if the matrices collectively
satisfy a specific sign property (defined below), the non-
convex QCQP can be solved to global optimality via a
second-order cone program. For convenience, we restate the
relevant definitions and theorem of [10].

Definition 1 ([10]). A symmetric matrix A ∈ Sn is said to be
almost off-diagonal non-positive if there exists a sign vector
σ ∈ {−1,+1}n such that [A]jkσjσk ≤ 0, (0 ≤ j < k ≤ n)

Definition 2 ([10]). A family of symmetric matrices Ap ∈
Sn (0 ≤ p ≤ m) is said to be uniformly almost off-diagonal
non-positive if there exists a sign vector σ ∈ {−1,+1}n
such that [Ap]jkσjσk ≤ 0, (1 ≤ j < k ≤ n, 0 ≤ p ≤ m)

Theorem 1 ([10]). Consider a QCQP of the form (3) in
which the family of symmetric matrices Pp ∈ Sn+1, (0 ≤
p ≤ m) is uniformly almost off-diagonal non-positive with
respect to a sign vector σ ∈ {−1,+1}n+1. Let Λ = {(j, k) :
[Pp]jk 6= 0 for some 0 ≤ p ≤ m, 0 ≤ j < k ≤ n}. Then

z =
[
σ0σ1

√
[X]11 . . . σ0σn

√
[X]nn

]T
(4)

is an optimal solution of (3) where X is the optimal solution
of the following second-order cone program:

min
X

P0 ·X

s.t. Pi ·X ≤ 0, i = 1, . . . ,m,

[X]00 = 1,∥∥∥∥[[X]jj − [X]kk
2[X]jk

]∥∥∥∥
2

≤ [X]jj + [X]kk, (j, k) ∈ Λ

(5)

B. Positive Systems
Consider a discrete-time linear system

x(k + 1) = Ax(k) +Bu(k) (6)

where k ∈ N, x(k) ∈ Rnx and u(k) ∈ Rnu . Let x(0) denote
the initial state of the system.

Definition 3. A discrete-time linear system is said to be
positive if A ≥ 0 and B ≥ 0.

Lemma 1 ([12]). Consider a positive system (A,B) with
initial condition x(0) ≥ 0. Given an input sequence u(k) ≥
0, (0 ≤ k ≤ N − 1), then x(k) ≥ 0, (1 ≤ k ≤ N).

III. PROBLEM SETUP
A. Model Predictive Control

Consider a discrete-time, linear system model

x(k + 1) = Ax(k) +Bu(k) (7)

where x(k) ∈ Rnx and u(k) ∈ Rnu . Let x(0) denote
the initial state of the system. To reduce notational clutter,
we will write x(0) as x0 in the following. Standard linear
MPC determines the optimal sequence of control actions
over a prediction horizon N ∈ N+ to minimize a given
quadratic cost function while respecting constraints on the
system states and controls [13]. For convenience, define the
following:

X =


x(0)
x(1)

...
x(N)

U =


u(0)
u(1)

...
u(N − 1)

Sx =


I
A
...
AN



Su =


0 . . . . . . 0
B 0 . . . 0

AB
. . . . . .

...
...

. . . . . . 0
AN−1B . . . . . . B


(8)

The system dynamics over the horizon N then evolve
according to

X = Sxx0 + SuU (9)

The MPC cost and constraint functions will be represented
by generic quadratic functions of the form

Fi(X ,U) =[
X
U

]T [
Qi Si

ST
i Ri

] [
X
U

]
+ 2

[
qi
ri

]T [X
U

]
+ γi (10)

where Qi ∈ S(N+1)nx , Ri ∈ SNnu , Si ∈ R(N+1)nx×Nnu ,
qi ∈ R(N+1)nx , ri ∈ RNnu , γi ∈ R.
The MPC problem can then be written compactly as:

min
X ,U

F0(X ,U)

s.t. X = Sxx0 + SuU ,
Fi(X ,U) ≤ 0, i = 1, . . . ,m

(11)

In this formulation, both the state X and control sequence
U are decision variables.
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B. Condensed MPC

We next project the quadratic cost and constraint functions
Fi(X ,U) onto the dynamic equality constraint (9), eliminat-
ing the state vector X as a decision variable. This is often
referred to as the condensed formulation as the resulting
problem is of smaller dimension but with less sparsity in
the matrices. We substitute (9) for X in (10) and define a
new quadratic function of the form

Gi(x0,U) = UTMiU + 2(xT0Ni + dTi )U
+ xT0 Tix0 + 2vTi x0 + γi (12)

where

Mi = ST
uQiSu + ST

u Si + ST
i Su +Ri (13)

Ni = ST
xQiSu + ST

x Si (14)

di = ST
u qi + ri (15)

Ti = ST
xQiSx (16)

vi = ST
x qi (17)

The condensed MPC formulation is then written as:

min
U

G0(x0,U)

s.t. Gi(x0,U) ≤ 0, i = 1, . . . ,m
(18)

Lastly, we rewrite the functions Gi(x0,U) in homogeneous
form by defining the following matrix:

Pi(x0) =

[
xT0 Tix0 + 2vTi x0 + γi (xT0Ni + dTi )

(NT
i x0 + di) Mi

]
(19)

We obtain the following equivalent homogeneous quadratic
program:

min
U

[
1
U

]T
P0(x0)

[
1
U

]
s.t.

[
1
U

]T
Pi(x0)

[
1
U

]
≤ 0, i = 1, . . . ,m

(20)

Remark. Although the homogeneous quadratic form is a
less common MPC formulation, it will allow us to readily
apply the proposed SOCP relaxation of Theorem 1.

IV. ADVERSARIAL MPC WITH NON-CONVEX
QUADRATIC FUNCTIONS

Provided the matrices Pi (i = 0, . . . ,m) of (20) satisfy the
conditions of Theorem 1, the (possibly non-convex) QCQP
can be solved exactly via its SOCP relaxation. However,
a priori it is not easy to see what system properties and
conditions of the MPC problem are necessary to ensure
Theorem 1 applies. The following theorem identifies these
system properties and conditions.

Theorem 2. Consider the homogeneous MPC formulation
(20) for controlling the discrete linear system (7) over a
horizon length N . Define n = Nnu as the dimension of
the decision variable U . Let the system dynamics (A,B),
cost and constraint matrices (Qi, Ri, Si, i = 0, . . . ,m) be
such that the family of matrices Mi ∈ Sn(i = 0, . . . ,m)

defined by (13) is uniformly almost off-diagonal non-positive
with respect to a given vector σ ∈ {−1,+1}n. Then
(20) can be solved exactly using the SOCP relaxation
(5) and reconstructing U according to (4) with σ̄+ =[
1 σ1 . . . σn

]T
when x0 ∈ X+ and σ̄− =[

1 −σ1 . . . −σn
]T

when x0 ∈ X− where X+

and X− are given by:

X+ = {x | [xT0Ni + dTi ]1kσk ≤ 0}, (21)

X− = {x | [xT0Ni + dTi ]1kσk ≥ 0}, (22)
0 ≤ i ≤ m, 1 ≤ k ≤ n

Proof. By Definition 2, the family of matrices Pi(x0), i =
0, . . . ,m, is uniformly almost off-diagonal non-positive with
respect to σ̄+ if:

[Pi(x0)]jkσ̄
+
j σ̄

+
k ≤ 0 (23)

0 ≤ i ≤ m, 1 ≤ j < k ≤ n+ 1

Given that σ̄+
1 = 1, it is straight-forward to see that this is

equivalent to the conditions

[xT0Ni + dTi ]1kσk ≤ 0 (24)
[Mi]jkσjσk ≤ 0 (25)

0 ≤ i ≤ m, 1 ≤ j < k ≤ n

Inequality (25) is satisfied by the stated assumption that Mi

is uniformly almost off-diagonal non-positive with respect
to σ. Thus we have (24) ⇐⇒ (23). Let X+ denote the set
of vectors that satisfy (24). When x0 ∈ X+, the family
of matrices Pi(x0) is uniformly almost off-diagonal non-
positive with respect to σ̄+ and Theorem 1 applies. A
nearly identical proof establishes that Pi(x0) is uniformly
almost off-diagonal non-positive with respect to σ̄− for
x0 ∈ X−.

Remark. Theorem 2 allows us to characterize a class of
non-convex MPC problems that can be solved using the
SOCP relaxation of Theorem 1. Notably, the solvability of
the problem depends on the initial condition x0 via the sets
X+ and X−.

It is possible that, for different initial conditions, the
conditions of Theorem 2 are satisfied for different σ. The
follow lemma further illustrates the relationship between
Pi(x0), σ and the corresponding sets X+ and X−.

Lemma 2. Given a single matrix Pi(x0) ∈ Sn+1, i ∈ N
that is almost off-diagonal non-positive with respect to some
σ̄ ∈ {−1,+1}n+1 then −Pi(x0) is also almost off-diagonal
non-positive with respect to σ̄ if and only if it is diagonal.

Proof. Sufficient: Pi(x0) is diagonal implies [Pi(x0)]jk =
0 (1 ≤ j < k ≤ n + 1). Applying Definition 1, a matrix
is almost off-diagonal non-positive with respect to σ̄ if
[Pi(x0)]jkσ̄j σ̄k ≤ 0 (1 ≤ j < k ≤ n+ 1). Given a diagonal
matrix, this relationship is true for arbitrary σ̄. If Pi(x0) is
diagonal then −Pi(x0) is also diagonal and therefore almost
off-diagonal non-positive with respect to any σ̄. Necessary:
Consider a matrix Pi(x0) ∈ Sn+1 with element [Pi(x0)]jk 6=
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0, (j < k) that is almost off-diagonal non-positive with
respect to σ̄. This implies [Pi(x0)]jkσ̄j σ̄k < 0 and thus
[−Pi(x0)]jkσ̄j σ̄k > 0. Therefore −Pi(x0) cannot be almost
off-diagonal non-positive with respect to σ̄.

Remark. Diagonal Pi(x0) includes the important case of
norm bounds on the control vector as given by lb ≤
UTRU ≤ ub where R is diagonal with non-negative entries
and lb, ub ∈ R are the lower and upper bounds respectively.
When lb > 0 and R contains more than one non-zero entry,
the resulting constraint is non-convex. This can be rewritten
as two constraints −UTRU ≤ lb and UTRU ≤ ub both of
which give diagonal matrices when put in the form (19). We
note that non-convex control constraints of this form arise in
thrust vectoring problems [14].

Remark. Linear state weightings of the form cTX with
c ∈ R(N+1)nx translate to off-diagonal entries in (19). If
a lower bound lb and upper bound ub is applied to a given
state weighting, one obtains two equal and opposite matri-
ces Pi(x0) and −Pi(x0) with off-diagonal terms. Applying
Lemma 2, both of the matrices cannot be almost off-diagonal
non-positive with respect to a given σ̄. Thus Theorem 2 does
not support MPC formulations with lower and upper bounds
applied to a given state weighting. In adversarial control this
is not a major limitation in practice as one is not attempting
to keep the system state within some prescribed bounds.

A. Adversarial Control of Positive Systems

The previous section established state-dependent condi-
tions under which the homogeneous adversarial MPC for-
mulation (20) can be solved by applying Theorem 1. By
restricting ourselves to positive systems, we establish condi-
tions under which Theorem 1 holds for all x0 ≥ 0 (i.e. the
positive orthant).

Theorem 3. Consider the homogeneous MPC formulation
(20) for controlling a discrete-time linear system (7) over
a horizon length N . Let the system dynamics (A,B) be
positive as described in Definition 3. Define n = Nnu as
the dimension of the decision variable U . Let the cost and
constraint matrices be such that Qi ≤ 0, [Ri]jk ≤ 0 (j 6=
k), Si ≤ 0, qi ≤ 0, ri ≤ 0 for i = 0, . . . ,m. Then (20) can
be solved using Theorem 1 with σ̄+ = 1n+1 when x0 ≥ 0.

Proof. The proof is simple but involves some tedious alge-
bra. For clarity, we outline the main steps below:

1) Show that [Mi]jk ≤ 0, 1 ≤ j < k ≤ n, 0 ≤ i ≤ m.
Proof : See below

2) Show that Ni ≤ 0, di ≤ 0, 0 ≤ i ≤ m
Proof : See below

3) Ni ≤ 0, di ≤ 0, x0 ≥ 0 =⇒ (xT0Ni + dTi ) ≤ 0
4) Steps 1 and 3 imply [Pi(x0)]jk ≤ 0 ∀ (j 6= k, x0 ≥

0). Therefore Pi(x0) is uniformly almost off-diagonal
non-positive with respect to σ̄+ = 1n+1 and (20) can
be solved using Theorem 1.

Step 1) Recall that the product of two non-negative matrices
is itself non-negative. We are given that A ≥ 0, B ≥ 0. By
induction, the products Ai ≥ 0, AiB ≥ 0, ∀ i ∈ N. This

implies Sx ≥ 0 and Su ≥ 0 as all the individual non-zero
entries shown in (8) can be written in terms of Ai and AiB
for some i ∈ N. Recall that the product of a non-negative
matrix and non-positive matrix is non-positive. So Si ≤ 0,
Su ≥ 0, Qi ≤ 0 =⇒ ST

u Si ≤ 0, ST
uQiSu ≤ 0

and therefore ST
uQiSu + ST

u Si + ST
i Su ≤ 0.

Lastly, we are given that [Ri]jk ≤ 0 (j 6= k).
From (13), Mi = ST

uQiSu + ST
u Si + ST

i Su + Ri.
Combining the previous results establishes that
[Mi]jk ≤ 0 (1 ≤ j < k ≤ n, 0 ≤ i ≤ m).

Step 2) Given Sx ≥ 0, Su ≥ 0, Qi ≤ 0, Si ≤ 0,
qi ≤ 0, and ri ≤ 0, similar reasoning as Step 1 establishes
that Ni ≤ 0 and di ≤ 0 as defined by (14) and (15)
respectively.

Remark. As σ̄+ = 1n+1 determines the sign pattern of the
solution, the resulting control sequence U is non-negative. A
positive system will remain in the positive orthant under the
action of this control sequence per Lemma 1.

Remark. Theorem 3 includes the practical case of an
objective function with diagonal Q0 < 0 and diagonal
R0 > 0. This represents a situation in which an adversary
is attempting to push the system away from the origin while
minimizing the energy expended to do so.

V. NUMERICAL EXAMPLES

We demonstrate our results on some simple systems. To
clearly point out sources of non-convexity, we write the
examples in uncondensed form with state variables appearing
in the cost function. However, the resulting problems are
solved by converting the problem to the form of (20) and
applying Theorem 1.

A. Indefinite Cost Function

Our first example applies an indefinite cost function to
a two-state system. This allows us to show graphically the
regions X+ and X− where we can solve the problem exactly.
Consider the following discrete state-space model:

A =

[
0.9 −0.2
0 0.9

]
B =

[
0.2 −0.05
0 2

]
We apply an indefinite quadratic objective of minimizing the
product of the two states over a horizon N . The control at
each step k is constrained to an annulus in R2. Additionally,
the total control effort over the horizon N is constrained,
reflecting energy constraints.

min
N∑

k=0

x(k)T
[
0 1
1 0

]
x(k)

s.t. X = Sxx(0) + SuU ,
0.2 ≤ ‖u(k)‖22 ≤ 0.5, k = 0, . . . , N − 1,

0 ≤ ‖U‖22 ≤
N

3
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We rewrite this in condensed form. Dropping constant terms,
the resulting cost function becomes:

G0(x(0),U) = UTM0U + 2(x(0)TN0)U

Where for N = 2 we have:

M0 =


0 0.0724 0 0.0360

0.0724 −0.0506 0.0360 −0.0260
0 0.0360 0 0.0400

0.0360 −0.0260 0.0400 −0.0200


N0 =

[
0 0.3258 0 0.1620

0.3258 −0.2187 0.1620 −0.1125

]
Here there is no offset term d0 as we have no linear terms

(q0, r0) in our original, uncondensed cost. M0 is off-diagonal
non-positive with respect to σ =

[
1 −1 1 −1

]
.

From Theorem 2 the SOCP relaxation is exact for x(0) ∈
X+ ∪ X− where X+ = {x | x ∈ R2, [x(0)TN0]1kσk ≤
0 (1 ≤ k ≤ 4)} and X− is similarly defined. Although X+

and X− are described by the intersection of four hyperplanes
which pass through the origin, we can limit ourselves to the
two hyperplanes whose normal vector has the smallest inner
product. This gives the following:

X+ = {x | x ∈ R2, x2 ≤ 0,−0.32358x1 + 0.2187x2 ≤ 0}
X− = {x | x ∈ R2, x2 ≥ 0,−0.32358x1 + 0.2187x2 ≥ 0}

Figure 1 shows the regions X+, X− when N = 2. A
sample trajectory is shown starting from x(0) = [0 0.1]T .
With a horizon of N = 2 we only obtain control commands
u(0) and u(1). As is standard in MPC, we apply the first
command u(0) which takes us to state x(1). Redefining x(1)
as our new initial condition we then resolve the problem. We
repeat this process 10 times to obtain the trajectory shown.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 1. Indefinite MPC example (N = 2) starting at x(0) = [0 0.1]T

Remark. X+ and X− are described by the intersection of
halfspaces formed from the columns of N0 ∈ Rnx×Nnu .
Interestingly for this problem, as N is increased the sets
X+, X− cover a larger portion of R2. For example, Figure

2 shows X+, X− for N = 20. With this horizon length we
can solve a trajectory starting at x(0) = [1 0.5]T which is
outside the solvable regions when N = 2.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 2. Indefinite MPC example (N = 20) starting at x(0) = [1 0.5]T

Remark. Minimizing or maximizing the product of two
states is frequently seen in economic MPC formulations.
In some instances, an indefinite stage cost can still yield
a convex problem if applied over a sufficiently long horizon
[15]. That does not occur here. Instead the cost function re-
mains indefinite with N positive eigenvalues and N negative
eigenvalues for a given horizon length N .

B. Adversarial Control of Double Integrator

Consider a simple planar double integrator model of
an autonomous vehicle with position states (px, py) and
associated velocity states (vx, vy). State feedback damping
terms regulate the system to the origin. An adversary is
able to apply disturbance forces (u1, u2) to the system. The
continuous dynamics are given by:

dpx
dt

= −0.1px + vx
dvx
dt

= −0.1vx + u1

dpy
dt

= −0.1py + vy
dvy
dt

= −0.1vy + u2

We discretize the continuous model using a zero-order-hold
with 0.2s sample time obtaining matrices (A,B) with state
vector x = [px py vx vy]T and control u = [u1 u2]T . By
inspection the discrete model is positive.

A =


0.9802 0 0.196 0

0 0.9802 0 0.196
0 0 0.9802 0
0 0 0 0.9802



B =


0.01974 0

0 0.01974
0.198 0

0 0.198
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We are given a safety envelope defined by the union of two
ellipsoids centered at the origin. The adversaries objective
is ensure the system’s position is outside this safe operating
envelope by the end of a horizon N = 10 while minimizing
energy expenditure. This terminal position constraint is non-
convex. The available control magnitude is bounded to be
within an annulus representative of thrust vectoring con-
straints. The resulting adversarial MPC problem is:

min
U

‖U‖

s.t. 1.0 ≤
(px(k)

1.0

)2
+
(py(k)

0.5

)2
, k = N,

1.0 ≤
(px(k)

0.5

)2
+
(py(k)

1.0

)2
, k = N,

0.04 ≤ u21(k) + u22(k) ≤ 0.25, k = 0, . . . , N − 1

Written in the standard quadratic form of (10), the terminal
position constraints have matrices Qi ≤ 0 while the control
constraints consist of diagonal Ri. Thus Theorem 3 applies
and we can solve this non-convex problem when x0 ≥ 0.
Figure 3 plots the ellipse bounds in the positive orthant
and shows sample trajectories with varying initial positions.
Figure 4 shows the associated control command. The initial
velocities are zero in each example. Starting at point (0, 0)
the adversarial control pushes the system towards the closest
point on the border of the safety envelope, reaching this point
only at the end in order to minimize the energy expended.
Starting at (0.5, 0) the damped dynamics of A are evident
as the trajectory initially moves towards the origin. Finally,
starting closer to the boundary at (0.1, 0.7), the trajectory
overshoots the boundary. This is due to the non-convex lower
bound on the control magnitude which prevents us from
turning off the control.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Safety envelope violation with minimum energy expenditure

C. Maximizing Voltage Mismatch within a Microgrid

Finally we consider a simple microgrid model consisting
of three buses. Without loss of generality, the origin is taken
to be the equilibrium point. Each bus i is modeled as a
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Fig. 4. Control history for safety envelope violation

capacitor ci with voltage vi. The buses are interconnected
by resistive transmission lines r2 and r3. Collectively they
supply power to a resistive load r1 and a constant power load
whose linearized dynamics can be represented by a negative
resistance r4. An adversary is able to inject current into the
system through i1 and i2. Table I lists the parameters.

TABLE I
MICROGRID PARAMETERS

c1 c2 c3 r1 r2 r3 r4

0.2 0.2 0.2 8 1 0.5 -10

The continuous dynamics are given by:

c1
dv1
dt

= − 1

r1
v1 −

1

r2
(v1 − v2) + i1

c2
dv2
dt

= − 1

r2
(v2 − v1)− 1

r3
(v2 − v3)

c3
dv3
dt

= − 1

r3
(v3 − v2)− 1

r4
v3 + i2

The discrete model with time-step 0.1s is:

A =

0.6282 0.2221 0.1026
0.2221 0.4171 0.3646
0.1026 0.3646 0.5663


B =

0.3941 0.0213
0.0716 0.1266
0.0213 0.3616


with state vector x = [v1 v2 v3]T and control u = [i1 i2]T .
By inspection the discrete model is positive.

In traditional microgrid voltage regulation, the controls
would attempt to achieve consensus on the voltages (v1 =
v2 = v3). Here we focus on maximizing disagreement by
injecting currents i1 and i2. The voltage disagreement at time
index k is defined as:

J(k) = (v1(k)−v2(k))2+(v1(k)−v3(k))2+(v2(k)−v3(k))2
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We use a horizon length of N = 20 and maximize disagree-
ment at the end.

min
U

− J(N)

s.t. i21(k) + i22(k) ≤ 1, k = 0, . . . , N − 1

The resulting condensed MPC formulation has two negative
eigenvalues, with the rest zero. Although the system is
positive, the matrix of the quadratic cost function −J(N)
contains positive off-diagonal terms and thus we cannot
apply Theorem 3. A simple numerical check reveals that the
problem is uniformly almost off-diagonal non-positive with
respect to σ = [ 1 −1T

30 1 −1 1 −1 1 −1 1 −1 1 −1 ].
Figure 5 shows the resulting state and control trajectory

with all states initially zero. At the end, the disagreement in
voltages is maximized. As σ contains both +1 and −1 entries
the resulting control sequences i1(k) and i2(k) contain both
positive and negative terms.
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Fig. 5. Maximizing voltage disagreement in a microgrid

D. Implementation Details

All examples were solved using MOSEK [16] in con-
junction with YALMIP [17]. For sufficiently small problems
we also solved the original non-convex QCQP using the
global optimization solver BMIBNB in YALMIP. This solver
implements a simple branch-and-bound algorithm which can
find global solutions to arbitrary optimization problems of
modest size. In all instances, the solution obtained matched
that provided by the SOCP formulation. Although our focus
is not on solver efficiency, we note that for a problem with
20 decision variables the SOCP formulation was consistently
solved in under 50ms while solving with BMIBNB took
over 100 seconds. Larger problems were not validated with
BMIBNB due to excessive runtimes.

VI. CONCLUSIONS

In this work we established conditions under which non-
convex, adversarial model predictive control problems can be

solved to global optimality via second-order cone program-
ming. For general systems, the global solution can only be
obtained in a subspace of the whole state-space. It was shown
that many adversarial problems are readily solved for systems
whose dynamics are invariant with respect to the positive
orthant. Future work will examine whether similar conditions
can be identified for systems which exhibit other forms of
invariance. For cases in which the system does not admit an
exact SOCP solution, we plan to combine our methods with
heuristics for approximately solving the resulting indefinite
QCQP [18].
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